Green Synthesis of Selenium Nanoparticles Using Echinacea Purpurea L. Extract
Subject Areas : Nano chemistryHossein Moradi 1 * , Khadijeh Talebi Ghadikalai 2
1 - Department of Horticulture, Sari University of Agricultural Sciences and Natural Resources, , Iran
2 - Sari Agricultural Sciences and Natural Resources University
Keywords: Stability, Hydroalcoholic, Nanotechnology, Functional Groups, Nanometer,
Abstract :
Today, nanotechnology is the most advanced and newest human technology that, by creating structures with a completely new molecular order, enables the manufacture and design of materials with new properties and characteristics. The production of new materials, tools, and systems at the atomic level is made possible by this technology. The production of nanoparticles using plants is an important branch of the green chemistry process and the biosynthesis of materials. Plants with a great genetic diversity contain reducing and stabilizing compounds and are now used as substitutes for chemicals in the synthesis of metal nanoparticles and metal oxides. For this reason, nanobiotechnology is a convergence of agricultural, medical, biotechnology, basic sciences and food industries. By using and combining green chemistry and nanoscience, many functional materials can be achieved that are safer and less expensive. The Echinacea purpurea plant, scientifically known as Echinacea purpurea, has many therapeutic properties such as antioxidant, anti-inflammatory and anti-cancer properties. Among the different metals used in green nanosynthesis, selenium nanoparticles have wide applications in medical fields, which in this study were coordinated by the effective metabolites of the E. purpurea plant. The results of the UV-Vis spectrum showed a peak of SeNPs (selenium nanoparticles) from the extract of this plant at a wavelength of 325 nm. Physicochemical properties (DLS analysis) of the green biosynthesis of selenium with E. purpurea extract, particles with an average of 161 nm with a frequency of 100% were formed, and with 3 times dilution, particles with an average of 140 nm with a frequency of 70%. Also, FTIR analysis confirmed the effectiveness of the functional groups C=C, C=O, CO, C-C, CH and OH present in the extract in the coordination and biosynthesis of SeNPs.
- رفیعی, ب., غنی, س., صادقی, د., واحسنی, م. (۱۳۹۷). سنتز سبز نانوذرات اکسید روی با استفاده از عصاره برگ گیاه اکالیپتوس ملیودورا و ارزیابی اثرات ضدمیکروبی آن. مجله علمی دانشگاه علوم پزشکی بابل، 20-28
- حسيني شيرازي, ف., فرهادي, ا., ووکيلي ظهير, ن (1384). مروري بر طيف سنجي مادون قرمز. مجله پژوهشي دانشکده پزشکي دانشگاه علوم پزشکي و خدمات بهداشتي درماني شهيد بهشتي, 379-386.
- مظفری، س.، اسدی، آ.، برزگر، علی.، ابراهیم زاده، م. ع.، پناهی، ع.، (1397). سنتز سبز نانوذرات سلنیوم با استفاده از عصاره میوه نسترن (Rosa canina)، چهارمین همایش ملی علوم و فناوری های نوین ایران، تهران. https://Civilica.com/doc/780814
- Amin, M., Hameed, S., Ali, A., Anwar, F., Shahid, S., Shakir, J., Yaqoob, A., Hasan, S., Khan, S and Rahman, S.
2014. Bioinorganic chemistry and Application, 135-824 - Adam, V., Wu, Q and Nowack, B. (2021), Integrated dynamic probabilistic material flow analysis of engineered materials in all European countries. NanoImpact, 22.
- Akhtar, M. S., Panwar, J. and Yun, Y. S. (2013). Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain. Chemical Engineering. 1 (6): 591–602. - Ahmed, Sh., Ahmad, M., Swami, B.L., Ikram. (2016).A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. S. J. Adv. Res, 7(1): 17-28 - Alomari, A., Fares, K and Moustafa, N. (2018). Green synthesis of assembled silver nanoparticles in nano capsules of Peganum harmala L leaf extract. Antibacterial activity and conjugate investigation, Cogent Chemistery Journal, 4(1): 374-532. - Apostolico, I., Aliberti, L., Caputo, L., De Feo, V., Fratianni, F., Nazzaro, F., Souza, L.F., Khadhr, M. (2016). Chemical Composition, Antibacterial and Phytotoxic Activities of peganum harmala seed Essential oils from Five Different Localities in Northern Africa. Molecules, 21(9): 1235 - Alomar, T. S., Amasoud, N., Awad, M., EL-Tohamy, M., Soliman. D. (2020). An wco-friendly plant-mediated synthesis of silver nanoparticles: Characterization, Pharmaceutical and biomedical applications, 123(2):254-584 - Alagesan, V. and Venugopal, S. (2019). Green Synthesis of selenium nanoparticle using leaves extract of withania somnifera and its biological applications and photocatalytic Activities. Bionanoscience, 9: 105-116. - Ahmad, N., Bhatnagar, S. S. (2015). Ali, R. Dutta, phytofabrication of bioinduced silver nanoparticles for biomedical applications. Int. Journal Nanomed, 10(1): 7019-7030. - Ahmad, H., & et al. (2020). Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globules and their fungicidal ability against pathogenic fungi of apple orchards. Biomolecules, 10(3): p. 425. - Abdallah, Y., & et al. (2020). Bioinspired green synthesis of chitosan and zinc oxide nanoparticles with strong antibacterial activity against rice pathogen Xanthomonas oryzae pv. oryzae.Molecules, 25(20): p. 4795. - Antoniou, J., & et al. (2015). Physicochemical and morpholo chitosan–tripolyphosphate nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 465: p. 137-146. - Ambika , S., & Sundrarajan , M. (2015). Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria. J Photochem Photobiol B, 146: 52-57. - Abbasian, R and Jafarizadeh-M, H. (2020). Green approach in gold, silver and selenium nanoparticles using coffee bean extract. Chemical Engineering, Department of food Engineering, (5): 761-767 - Alkasir, M., & et al. (2020). Evaluation cytotoxicity effects of biosynthesized zinc oxide nanoparticles using aqueous Linum Usitatissimum extract and investigation of their photocatalytic. Inorganic Chemistry Communications, 119. - Azizi, M., Sedaghat, S., Tahvildari, K., Derakhshi, P and Ghaemi, A. (2017). Synthesis of silver nanoparticles using peganum harmala extract as green route. Green chemistry Letters and reviews Journal, 10(4): 420-427. - Bakkalbasi, E., Okumus, E., Javadipour, I., Meral, R., & Ceylan, Z. (2021). A novel coating material: Ellagitannins-loaded maltodextrin and lecitin-based nanomaterials. Food Bioscience, 101-158. - Beyene, H.D., Werkneh, A.A., Bezabh, H. K and T. G, Ambaye, (2017). Synthesis paradigm and application of silver nanoparticles (AgNPs), a review. Sustainable Materials and Technologies, 13: 18-23. - Dos Santos Grasel. F., Ferrao. M. F and Wolf. C. R. (2016). Development of methodology for identification the nature of the polyphenolic extracts by FTIR associated with multivariate analysis. Spectrochemica Acta part A: Molecular and Biomolecular Spectroscopy, 153(1): 94-101. - Erenler, R., Meral, B., Sen, O., Elmastas, M., Aydin, A., Eminagaoglu, O., …, (2017). Bioassay-guided isolation, identification of compounds from Origanum rotundifolium and investigation of their antiproliferative and antioxidant activities. Pharmaceutical Biology, 55(1):1646-1653. - El-Refaei, M., & El-Naa, M. (2011). Antioxidant and Apoptotic Effects of Caffeic Acid Phenethyl Ester Induced marked Inhibition on human breast Cancer Cell Line. Asian J of Biochem, 82-89 - Fazlzadeh, M., Khosravi, R., Zarei, A. (2017). Green synthesis of zinc oxide nanoparticles using Peganum harmala seed extract, and loaded on peganum harmala seed powdered activated as new adsorbent for removal of Cr(VI) from aqueous solution. Ecological Engineering, 103: 180-190. - Fahmy, S. A., Issa, M. Y., Saleh, B. M., Meselhy, M. R., El-Said, H. M. (2021). Peganum harmala Alkaloids Self-Assembled Supramolecular Nanocapsules with Enhanced Antioxidant and Cytotoxic Activities. American chemical society, 6(1): 11954-11963. - Fritea, L., Laslo, V., Cavalu, S., Costea, T and I-Vicas, S. (2017). Green biosynthesis of selenium nanoparticle using parsley (Petroselinum crispum) leaves extract. Vasile Goldis University press, 27(3): 203-208. - Guzel, E., Arlier, S., Guzeloglu-Kayisli, O., S.Tabak, M., Ekiz, T., Semerci, N., Larsen, K., Schatz, F., J.Lockwood, C and U.A, Kayisli, (2017). Endoplasmic Reticulum Stress and Homeostasis in Reproductive Physiology and Pathology. International Journal of Molecular Sciences, 18(4):792. - Gurunathan, S., Han, J. W., Kwon, D. N. and Kim, J. H. (2014). Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Research Letters. 9(1): 1–17. - Hosnedlova, B., Kepinska, M., Skalickova, S., Fernandez, C., Ruttkay-Nedecky, B., Peng, Q., et al. (2018). Nano-selenium and its nanomedicine applications: a critical review. International journal Nanomedicine. 13: 2107–2128 - Henriques, F., Guine, R. and Barroca, M. I. (2012). Chemical properties of pumpkin dried by different methods. Croation Journal of Food Technology, Biotecnology and Nutrition, 7: 98-105. - Jaber , B., & Laânab , L. (2014). One step synthesis of ZnO nanoparticles in free organic medium: Structural and optical characterizations. Mat Sci Semicon Proc, 27:446-51. - Kora, A. J and Arunachalam, J. (2013). Biosynthesis of silver nanoparticles by the seed extract of strychnos potatorum: a natural phytocoagulant. IET Nano Biotechnology, 7(3): 83-89. - Kapur, M., Soni, K and Kohil, K. (2017). Green synthesis of selenium nanoparticles from Broccoli, Characterization, Application and Toxicity, Adv Tech Biol Med, 5(1): 1-7. - Kennedy, D. C., Orts-Gil, G., Lai, C. H., Müller, L., Haase, A., Luch, A., et al. (2014). Carbohydrate functionalization of silver nanoparticles modulates cytotoxicity and cellular uptake. Journal of Nanobiotechnology. 12(1): 1–8. - Kassas, H. Y. and Attia, A. A. (2014). Bactericidal application and cytotoxic activity of biosynthesized silver nanoparticles with an extract of the red seaweed Pterocladiella capillacea on the HepG2 cell line. Asian Pacific Journal of Cancer Prevention. 15(3): 1299–1306. - Khatami, M., Heli, H., M.Jahani, P and H, Azizi, (2017). Copper/copper oxide nanoparticles synthesis using Stachys lavandulifolia and its antibacterial activity. IET Nanobiotechnology, 11(6): 709-713. - Karimi, N., Behbahani, M., Dini, G and Razmjou, A. (2018). Enhancing the secondary metabolite and anticancer activity of Echinacea purpurea callus extracts by treatment with biosynthesized ZnO nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9(4):2043-6254. - Kokila, K., Elavarasan, N and Sujatha, V. (2017). Diospyros montana leaf extract-mediated synthesis of selenium nanoparticles and its Biological applications. New Journal Chemistry, 41(15): 7481-7490 - Kirupagaran, R., Saritha, A and Bhuvaneswari, S. (2015). Green synthesis of selenium nanoparticles from leaf and stem extract of leucas lavandulifolia Sm and their application. Journal of Nanoscience and Technology, 2(5): 224-226. - Lee, T. Y., Liu, M., Huang, L., Lue, S. I, Lin, L. C., Kwan, A. L., et al. (2013). Bioenergeticfailure correlates with autophagy and apoptosis in rat liver following silver nanoparticle intraperitoneally administration. Particle and Fibre Toxicology. 10(1): 1-13. - Maqsood, S., Abushelaibi, A., Manheem, K., Al-Rashedi, A and I, T.Kadim, (2015). Lipid Oxidation, protein degradation, microbial and sensorial quality of camel meat as influenced by phenolic compounds. Food Science and Technology, 63(2): 953-959. - Menon, S., Devi, K. S. S., Agarwal, H., Shanmugan, V. K. (2019). Efficacy of Biogenic selenium nanoparticles from an extract of ginger towards evaluation on anti-microbial and anti-oxidant activities. Journal Colloid and Interface Science Communication, 29 (4): 1-8. - Pantidos, N., Horsfall, L. E. (2014). Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. Journal Nanomed. Nanotechnol, 5(5): 1-10. - Ramesh, M., Anbuvannan, M., Viruthagiri, G. (2015). Green synthesis of ZbO nanoparticles using solanum nigrum leaf extract and their antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136(2): 864-870. - Ramteke, C., Chakrabarti, T., Sarangi, B. K., Pandey, R. A. (2012). Synthesis of silver nanoparticles from the aqueous extract of leaves of Ocimum sanctum for enhanced antibacterial activity. Journal of Chemistry, 2013(7): 1-7. - Russo, M., Russo, G. L., Daglia, M., et al. (2016). Understanding genistein in cancer: the“good”and the“bad”effects: a review Food Chem,196: 589–600. - Rafique, M., Sadaf, I., Rafique, M.Sh and M.B, Tahir, (2016). A review on green synthesis of silver nanoparticles and their applications. Artificial Cell, Nanomedicine, and Biotechnology, 45(7):1272-1291 - Ranjbar, M., Kiani, M., & Khakdan, F. (2020). Mentha mozaffarianii mediated biogenic zinc nanoparticles target selected cancer cell lines and microbial pathogens. Journal of Drug Delivery Science and Technology, 60. - Ramamurthy, C. H., Sampath, K. S., Arunkumar. P., Suresh Kumar, M., Sujatha, V., Premkumar, K. and Thirunavukkarasu, C. (2013). Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess and Biosystems Engineering, 36:1131–1139. - Shabaani, M., & et al. (2020). Green synthesis of ZnO nanoparticles using loquat seed extract; Biological functions and photocatalytic degradation properties. 134: p. 110133. LWT, 110-133. - Sivakumar, C and Jeganathan, K. (2018). In-vitro cytotoxicity of java tea mediated selenium nanoballs against L6 cell lines. Journal of Drug Delivery and Therapeutics, 8(6): 195-200. - Shaheen, H. A and Issa, M. Y. (2019). In vivo activity of Peganum harmala L. alkaloids against phytopathogenic bacteria. Journal Scientia Horticulturae, 265: 304-423. - Sharma, G., Sharma, A. R., Bhavesh, R., Park, J., Ganbold, B., Nam,J. S., Lee, S. S. (2014). Biomolecule- Mediated synthesis of selenium Nanoparticles using Dried vitis vinifera (Raisin) Extract. Molecules, 19(3): 2761-2770. - Salata, O, (2004). Applications of nanoparticles in biology and medicine. Journal of Nanobiotechnology, 2(1):3. - Song, J. Y., Kim, B. S. (2009). Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering, 32(4): 79-84. - Sangeetha, G., Rajeshwari, S., Venckatesh, R. (2011). Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: structure and optical properties. Materials Research Bulletin, 46(12): 2560-2566. - Stan , M., Popa , A., Toloman , D., Silipas , T., & Vodnar , D. (2016). Antibacterial and antioxidant activitie of ZnO nanoparticles synthesized using extracts of Allium sativum, Rosmarinus officinalis and Ocimum basilicum. Acta Metall Sin (Engl. Lett.), 29(3):228-236. - Sadeghi. H., Q.Alijani. H., Hahemi – Shahraki. S., Naderifar. M and Rahimi.S. S. (2022). Iron oxyhydroxide nanoparticles: green synthesis and their cytotoxicity activity against A549 human lung adenocarcinoma cells. Rendiconti Lincei. Scienze Fisiche e Naturali, 33: 461-469. - Salayová, A., & et al. (2021). Green synthesis of silver nanoparticles with antibacterial activity using various medicinal plant extracts: Morphology and antibacterial efficacy. Nanomaterials, 11(4): p. 1005. - Sakanaka, S., & Ishihara, Y. (2008). Comparison of antioxidant properties of persimmon vinegar and some other commercial vine gars in radical scavenging assays and on lipid oxidation in tuna homogenates. Food Chem, 739-744. - Thakkar, K. N., Mhatre, S. S., Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: nanotechnology, Biology and Medicine, 6(2): 257-262. - Zonaro, E., Lampis, L., Turner, R. J., Qazi, S. J. S and Vallini, G. (2015). Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms. Frontiers in Microbiology, 16(6): 584