Algorithm trading, trend and cyclical volatility and stock returns: a band-pass filter and PMG-ARDL approach
Elahe Rezazade
1
(
PhD Student, Department of Accounting, Fi.C., Islamic Azad University, Firoozkooh, Iran, elahe.rezazadeh@iau.ac.ir
)
Mehdi Fathabadi
2
(
Department of Economics, Fi.C., Islamic Azad University, Firoozkooh, Iran, fathabadi.mehdi@iau.ac.ir
)
ُSeyedeh Atefeh Hosseini
3
(
Department of Accounting, Fi.C., Islamic Azad University, Firoozkooh, Iran, hosseini.atefeh@iau.ac.ir
)
kazem Haronkolaei
4
(
Department of Accounting, Fi.C., Islamic Azad University, Firoozkooh, Iran, Kazem.haron@iau.ac.ir
)
Keywords: Algorithm Trading, Trend and cyclical volatility, Stock return, Band-pass Filter, PMG-ARDL,
Abstract :
This study investigated the effects of Algorithmic Trading (AT), trend and cyclical variability on daily stock price returns for 15 listed companies from May 9, 2020, to June 9, 2024. Initially, the unit root test results revealed that 12 return series were stationary, for which an ARMA model was estimated. Conversely, a random walk model was applied to the remaining three series. For the 12 stationary series, a GARCH(1,1) model was estimated, while an IGARCH(1,1) model was used for the 3 random walk series to obtain conditional variance as a measure of volatility. The volatility was subsequently decomposed into trend and cyclical components using the Cristiano-Fitzgerald (CF) band-pass filter. Following this, the effects of AT as well as total, trend and cyclical volatility on stock returns were analyzed using a PMG-ARDL model. First, the cross-sectional dependence test confirmed the presence of dependence across all series. Thereafter, the Pesaran unit root test (CIPS) demonstrated that all variables were integrated of order zero (I(0)). The Kao co-integration test further substantiated the existence of a long-run relationship between variables. The results indicate that AT has a negative and statistically insignificant effect on price returns in the long run, while showing a negative and statistically significant effect in the short run. Additionally, total and trend volatility exert a positive and significant impact on returns in both the long-run and short-run models. Conversely, cyclical volatility negatively affects returns in the long-run model, while its impact is insignificant in the short-run. These findings suggest that as cyclical volatility increases and persists, stock prices tend to decline.
حاجیها، زهره، و صفری، فاطمه. (1397). بررسی ارتباط ریسک سیستماتیک سهام وچولگی بازده سهام. مدیریت دارایی و تامین مالی، 6(1 (پیاپی 20) )، 1-10.
دارابی، رویا. (1399). توان توضیح دهندگی بازده های سهام بوسیله نوسانات نامتعارف (ریسک غیرسیستماتیک). تحقیقات حسابداری و حسابرسی (تحقیقات حسابداری)، 12(45 )، 147-170.
دولو، مریم، و صدری نیا، مصطفی. (1396). ریسک نامتقارن و بازده مورد انتظار. تحقیقات حسابداری و حسابرسی (تحقیقات حسابداری)، 9(36 )، 97-114.
دهقان خاوری، سعید، و میرجلیلی، سیدحسین. (1398). تعامل ریسک سیستماتیک با بازده سهام در بورس اوراق بهادار تهران. اقتصاد مالی (اقتصاد مالی و توسعه)، 13(49 )، 257-282.
رجب بلوکات، محسن، باغانی، علی، نجفی مقدم، علی، صراف، فاطمه و نورالهزاده، نوروز. (1402). تاثیر اندازه و شدت هم جهشهای قیمتی در پیش بینی تلاطم شاخص در بورس اوراق بهادار تهران. دانش سرمایهگذاری، 14(53)، 389-410.
عسکری حسنآبادی، سهیلا، مرادپور، سعید، رنجبر، محمدحسین و امیری، علی. (1404). بررسی تاثیر عدم تعادل در سفارشات معاملات الگوریتمی بر نرخ بازده غیرعادی سهام در بازارهای متلاطم. دانش سرمایهگذاری، 14(55)، 119-158.
مظفرنیا، مهدی، فلاح شمس لیالستانی، میرفیض، و زمردیان، غلامرضا. (1400). وابستگی رژیمی و سرایت پذیری چرخه ای تلاطم نرخ ارز و قیمت سهام در ایران. پیشرفت های مالی و سرمایه گذاری، 2(4 )، 107-129.
نیکوسخن، معین، و فدایی نژاد، محمداسماعیل. (1397). بررسی اهمیت ریسک غیرسیستماتیک هر ورقه بهادار: نگاهی دیگر به ریسک غیرسیستماتیک و بازده. راهبرد مدیریت مالی، 6(20 )، 1-24.
Acharya, V. V., & Pedersen, L. H. (2005). Asset pricing with liquidity risk. Journal of financial Economics, 77(2), 375-410.
Aitken, M., Cumming, D., & Zhan, F. (2023). Algorithmic trading and market quality: International evidence of the impact of errors in colocation dates. Journal of Banking & Finance, 151, 106843.
Amihud, Y., & Mendelson, H. (1986). Asset pricing and the bid-ask spread. Journal of financial Economics, 17(2), 223-249.
Ang, A., & Bekaert, G. (2002). Short rate nonlinearities and regime switches. Journal of Economic Dynamics and Control, 26(7-8), 1243-1274.
Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. The review of economic studies, 58(2), 277-297.
Aven, T. (2016). Risk assessment and risk management: Review of recent advances on their foundation. European journal of operational research, 253(1), 1-13.
Black, F. (1976). Studies of stock market volatility changes. Proceedings of the American Statistical Association, Business & Economic Statistics Section, 1976.
Boehmer, E., Fong, K., & Wu, J. J. (2021). Algorithmic trading and market quality: International evidence. Journal of Financial and Quantitative Analysis, 56(8), 2659-2688.
Boyer, B., Mitton, T., & Vorkink, K. (2010). Expected idiosyncratic skewness. The Review of Financial Studies, 23(1), 169-202.
Brogaard, J. (2011). High frequency trading and volatility. SSRN eLibrary.
Christie, A. A. (1982). The stochastic behavior of common stock variances: Value, leverage and interest rate effects. Journal of financial Economics, 10(4), 407-432.
Christiano, L. J., & Fitzgerald, T. J. (2003). The band pass filter. International economic review, 44(2), 435-465.
Chen, S. S. (2012). Revisiting the empirical linkages between stock returns and trading volume. Journal of Banking & Finance, 36(6), 1781-1788.
Cheung, W. M., Chung, R., & Fung, S. (2015). The effects of stock liquidity on firm value and corporate governance: Endogeneity and the REIT experiment. Journal of corporate finance, 35, 211-231.
Conrad, J., Dittmar, R. F., & Ghysels, E. (2013). Ex ante skewness and expected stock returns. The Journal of Finance, 68(1), 85-124.
Dash, R., & Dash, P. K. (2016). A hybrid stock trading framework integrating technical analysis with machine learning techniques. The Journal of Finance and Data Science, 2(1), 42-57.
Dickey, D. A., & Fthe uller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American statistical association, 74(366a), 427-431.
Dickey, D. A., & Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica: journal of the Econometric Society, 1057-1072.
Dolado, J. J., Jenkinson, T., & Sosvilla‐Rivero, S. (1990). Cointegration and unit roots. Journal of economic surveys, 4(3), 249-273.
Edmans, A., Fang, V. W., & Zur, E. (2013). The effect of liquidity on governance. The Review of Financial Studies, 26(6), 1443-1482.
Enders, W. (2008). Applied econometric time series. John Wiley & Sons.
Fama, E. F., & MacBeth, J. D. (1973). Risk, return, and equilibrium: Empirical tests. Journal of political economy, 81(3), 607-636.
Fang, V. W., Noe, T. H., & Tice, S. (2009). Stock market liquidity and firm value. Journal of financial Economics, 94(1), 150-169.
Fu, F. (2009). Idiosyncratic risk and the cross-section of expected stock returns. Journal of financial Economics, 91(1), 24-37.
Guo, H., Kassa, H., & Ferguson, M. F. (2014). On the relation between EGARCH idiosyncratic volatility and expected stock returns. Journal of Financial and Quantitative Analysis, 49(1), 271-296.
Hamilton, J. (1994). Time series econometrics.
Kirilenko, A., Kyle, A. S., Samadi, M., & Tuzun, T. (2017). The flash crash: High‐frequency trading in an electronic market. The Journal of Finance, 72(3), 967-998.
Koegelenberg, D. J. C., & van Vuuren, J. H. (2024). A dynamic price jump exit and re-entry strategy for intraday trading algorithms based on market volatility. Expert Systems with Applications, 243, 122892.
Maheu, J. M., & McCurdy, T. H. (2000). Identifying bull and bear markets in stock returns. Journal of Business & Economic Statistics, 18(1), 100-112.
Merton, R. C. (1980). On estimating the expected return on the market: An exploratory investigation. Journal of financial economics, 8(4), 323-361.
Merton, R. C. (1987). A simple model of capital market equilibrium with incomplete information. Journal of finance, 42, 483-510.
Mitton, T., & Vorkink, K. (2007). Equilibrium underdiversification and the preference for skewness. The Review of Financial Studies, 20(4), 1255-1288.
Nau, R. (2014). Forecasting with moving averages. Fuqua School of Business, Duke University, 1-3.
Nilsson, R. and Gyomai, G. (2011). Cycle Extraction: A Comparison of the Phase Average Trend Method, the Hodrick-Prescott and Christiano-Fitzgerald Filters. OECD Statistics working paper, (04), 4 - 8.
O'Hara, M. (2003). Presidential address: Liquidity and price discovery. The journal of Finance, 58(4), 1335-1354.
O’hara, M. (2015). High frequency market microstructure. Journal of financial economics, 116(2), 257-270.
Park, S. G., Wei, K. C., & Zhang, L. (2020). The Fu (2009) positive relation between idiosyncratic volatility and expected returns is due to look-ahead bias. Critical Finance Review, Forthcoming.
Pesaran, M. H., Shin, Y., & Smith, R. P. (1999). Pooled mean group estimation of dynamic heterogeneous panels. Journal of the American statistical Association, 94(446), 621-634.
Perron, P. (1989). The great crash, the oil price shock, and the unit root hypothesis. Econometrica, 57, 1361–1401.
Perron, P. (1997). Further evidence on breaking trend functions in macroeconomic variables. Journal of econometrics, 80(2), 355-385.
Sadka, R. (2010). Liquidity risk and the cross-section of hedge-fund returns. Journal of Financial Economics, 98(1), 54-71.
Schmidt-Kessen, M. J., Eenmaa, H., & Mitre, M. (2022). Machines that make and keep promises-Lessons for contract automation from algorithmic trading on financial markets. Computer Law & Security Review, 46, 105717.
Scholtus, M., Van Dijk, D., & Frijns, B. (2014). Speed, algorithmic trading, and market quality around macroeconomic news announcements. Journal of Banking & Finance, 38, 89-105.
Stambaugh, R. F., Yu, J., & Yuan, Y. (2015). Arbitrage asymmetry and the idiosyncratic volatility puzzle. The Journal of Finance, 70(5), 1903-1948.
Vogelsang, T. J., & Perron, P. (1998). Additional tests for a unit root allowing for a break in the trend function at an unknown time. International Economic Review, 1073-1100.
Zhang, F. (2010). High-frequency trading, stock volatility, and price discovery. Available at SSRN 1691679.
Zhang, F., Zhang, Y., Xu, Y., & Chen, Y. (2024). Dynamic relationship between volume and volatility in the Chinese stock market: evidence from the MS-VAR model. Data Science and Management, 7(1), 17-24.
Zhou, H., Kalev, P. S., & Frino, A. (2020). Algorithmic trading in turbulent markets. Pacific-Basin Finance Journal, 62, 101358.
Zivot, E., & Andrews, D. W. K. (1992). Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. Journal of Business & Economic Statistics, 10, 251–270.