Preparation of magnetic nanocomposite containing zirconium(IV) oxydichloride based on Merrifield resin and its application as catalyst in the synthesis of chromene derivatives
Subject Areas : Synthesis and Characterization of Nanostructures
Milad Sadeghi
1
,
Alireza Pourali
2
*
1 - School of Chemistry, Damghan University, Damghan. Iran.
2 - School of Chemistry, Damghan University, Damghan. Iran.
Keywords: Polymer nanocomposite, Chloromethyl polystyrene (Merrifield resin), Iron nanoparticles, Zirconium(IV) oxydichloride, Chromene.,
Abstract :
In this study, a heterogeneous nanocomposite was prepared from chloromethyl polystyrene (Merrifield resin), iron magnetic nanoparticles and ZrOCl2 and its catalytic properties were investigated in the three-component reaction of the synthesis of chromene derivatives. The iron nanoparticles were surface modified in two steps including (1) reaction with tetraethyl orthosilicate (TEOS) and (2) reaction with 3-aminopropyl triethoxysilane (APTES). In each step, the precipitate was separated by a relatively strong external magnet and washed with water and ethanol. Then, the heterogeneous catalyst Fe3O4@SiO2@CMPS@ZrOCl2 was prepared in three steps including (1) polymer swelling with a suitable solvent (2) preparation of Fe3O4@SiO2@CMPS nanocomposite by covalently linking chloromethylated polystyrene with surface-modified iron nanoparticles (3) reaction with ZrOCl2. FTIR, FESEM, EDX, XRD, ICP, TGA and VSM analyses were used to characterize the catalyst. The Fe3O4@SiO2@CMPS@ZrOCl2 nanocomposite was used as a heterogeneous catalyst for the three-component synthesis of chromene derivatives (benzaldehyde, dimedone and malononitrile). The derivatives were prepared in a short reaction time with high yield. In addition, the catalyst showed good magnetic properties so that it was easily separated magnetically from the reaction mixture. This nanocatalyst can also be recycled and reused up to five consecutive cycles without any reduction in its effectiveness.
1. P.Y. Bruice, Organic Chemistry, 7th edn. (Pearson Education, Boston, 2014), pp. 1079–1081.
2. A.S. Sharma, V.S. Sharma, P. Yadav, H. Kaur, R.S. Varma. ChemCatChem, 15, e202201493 (2023).
3. T. Aalhusaini, D. Pore, G. Rashinkar. J. Organomet. Chem. 1023, 123406 (2025).
4. A. Aggarwal, H.K. Chopra. J. Mol. Liq. 415, Part A, 126329 (2024).
5. A. Aggarwal, A. Singh, H.K. Chopra. Curr. Org. Chem. 27, 130-152 (2023).
6. P. Kachhap, N. Chaudhary, C. Haldar. React. Funct. Polym. 189, 105606 (2023).
7. M. Fantinel, N. Valiati, P.A.M. Moro, M.M. Sá. Tetrahedron 86, 132081, (2021).
8. K. Rajasree, K. S. Devaky. J. Appl. Polym. Sci. 82, 593-600 (2001).
9.M. Xu, Z. Ou, Z. Shi, M. Xu, H. Li, S. Yu, B. He React. Funct. Polym. 48, 85-95 (2001).
10.N. Iranpoor, H. Firouzabadi, A.R. Pourali. Tetrahedron, 58, 5179-5184 (2002).
11. A.R. Pourali, S. Ghayeni, F. Afghahi. Bull. Korean Chem. Soc. 34, 1741-1744 (2013).
12. A.R. Pourali, S. Bahrami-Nasab, S.M.R. Nazifi. Natl. Acad. Sci. Lett. 38, 45–48 (2015).
13. N. Ghaffari Khaligh, P. Ghods Ghasem-Abadi, T. Mihankhah. Comptes Rendus Chimie 17, 23-29 (2014).
14. G. Zhao, Z. Chai. in Recoverable and Recyclable Catalysts, ed. By M. Benaglia, (John Wiley & Sons, 2009), pp. 49-50.
15. J. Govan, Y.K. Gun’ko. Nanomaterials, 4, 222–241 (2014).
16. A.M. Abu-Dief, S.M. Abdel-Fatah. Beni-Suef Univ. J. Basic Appl. Sci., 7, 55–67 (2018).
17. H.L. Singh, M. Chahar, Sangeeta, S. Sahal, S. Khaturia. Results in Chemistry 5, 100884 (2023).
18. M.K. Katiyar, G.K. Dhakad, S. Arora, S. Bhagat, T. Katyal, R. Kumar. J. Mol. Struct. 1263, 133012 (2022).
19. P.B. Hiremath, K. Kantharaju. ChemistrySelect 5, 1896 –1906 (2020).
20. M. Kidwai, S. Saxena, M.K.R. Khan, S.S. Thukral. Bioorg. Med. Chem. Lett. 15, 4295-4298 (2005).
21. L. Bonsignore, G. Loy, D. Secci, A. Calignano. Eur. J. Med. Chem., 28, 517-520 (1993).
22. L. Alvey, S. Prado, B. Saint-Joanis, S. Michel, M. Koch, S.T. Cole, F. Tillequin, Y.L. Janin. Eur. J. Med. Chem. 44, 2497-2505 (2009).
23. D. Kumar, V.B. Reddy, S. Sharad, U. Dube, S. Kapur. Eur. J. Med. Chem. 44, 3805-3809 (2009).
24. L. R. Wen, H. Y. Xie, M. Li. J. Heterocyclic Chem. 46, 954-959 (2009).
25. R.S. Bhosale, C.V. Magar, K.S. Solanke, S.B. Mane, S.S. Choudhary, R.P. Pawar. Synth. Commun. 37, 4353–4357 (2007).
26. F. Shahbazi, K. Amani. Catal. Commun. 55, 57–64 (2014).
27. V.M. Joshi, R.L. Magar, P.B. Throat, S.U. Tekale, B.R. Patil, M.P. Kale, R.P. Pawar. Chin. Chem. Lett. 25, 455-458 (2014).
28. X.S. Wang, D.Q. Shi, S.J. Tu, C.S. Yao. Synth. Commun. 33, 119–126 (2003).
29. H. Firouzabadi, M. Jafarpour. J. Iran. Chem. Soc. 5, 159-183 (2008).
30. K. Nikoofar, Z. Khademi. Res. Chem. Intermed. 42, 3929–3977 (2016).
31. B. Karami, M. Kiani. Catal. Commun. 14, 62-67 (2011).
32. N. Hazeri, M. T. Maghsoodlou, F. Mir, M. Kangani, H. Saravani, E. Molashahi, Chinese J. Catal. 35, 391-395 (2014).
33. B. Paplal, S. Nagaraju, P. Veerabhadraiah, K. Sujatha, S. Kanvah, B.V. Kumar, D. Kashinath, RSC Adv. 4, 54168-54174 (2014).