Preparation and investigation of structural properties of copper oxide magnetic nanocomposite
Subject Areas : Synthesis and Characterization of NanostructuresMahnaz Mahdavi 1 * , Farnak Fekri Lari 2
1 - Department of Chemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
2 - Department of Chemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
Keywords: Characterization, Nanoparticles, Fe3O4@CuO.,
Abstract :
Among the crystalline nano materials, synthesis of magnetic nanoparticles has been explored extensively for numerous applications, such as electronics, pigments, nanomedicines, catalysts and magnetic memories. In this study, magnetic copper oxide Fe3O4@CuO nanoparticles were synthesized in the form of nanocomposite containing two types of metal oxides. The structural, morphological and magnetic properties of the nanocrystals were characterized by powder X-ray diffraction, Fourier transformed infrared(FT-IR) spectroscopy, scanning electron microscopy(SEM) and vibrating sample magnetometer(VSM). The X-ray diffraction pattern of the samples confirmed the crystal structure of the magnetic copper nanoparticles. The FT-IR spectra of the samples confirmed the vibration of Cu–O and Fe–O bonds in the nanocomposite. SEM images showed the average size of the nanoparticles to be about 50 nm, which is in agreement with the size obtained from XRD and Scherrer's relation. VSM results also indicate the paramagnetic property of the nanoparticles.
1. H. Yang. J. Yan, Z. Lu X. Cheng, Y. Tang, J. Alloys Compd. 476, 715-719 (2009).
2. X. Wei. R.C. Viadero Jr, Colloids and Surfaces A: Physicochem, Eng. Aspects 294, 280-286 (2007).
3. L. Cabrera, S. Gutierrez, N. Menendez, M.P. Morales, P. Herrasti, Electrochimica Acta 53, 3436-3441(2008).
4. S. Qadri, A. Ganoe, Y. Haik, J. Hazard. Materials 169, 318-23 (2009).
5. T. Liu, L. Wang, P. Yang, B. Hu, Mater. Let. 62, 4056-4058 (2008).
6. K. Faungnawakij, N. Shimoda, T. Fukunaga, R. Kikuchi, K. Eguchi, App. Cat. Environmental 92, 341-350 (2009).
7. Z. Sun, L. Liu, D. Jia, W. Pan, Sensors and Actuators B1 25, 144-148 (2007).
8. S. Tao, F. Gao, X. Liu, Mater. Sci. Eng. B 77, 172-176 (2000).
9. D. Shi, A. Dunn, D. Mast, Nanoscale 7, 8209-8232 (2015).
10. L. Liang, Q. Zhu, T. Wang, F. Wang, J. Ma, L. Jing, J. Sun, Microporous Mesoporous Mater. 197, 221–228 (2014).
11. M. Mahdavi Shahri, S. Azizi, J. Nanostructure, 7, 205-215 (2017).
12. S. Tajik, et al., RSC Adv. 10, 15171–15178 (2020).
13. H. Verma, R. Dwivedi, R. Prasad, K. S. Bartwal, J. Nanoparticles, DOI: 10.1155/2013/737831.
14. A. Ghorbani-Choghamarani, M. Hajjami, M. Norouzi, Z. Safari, Nanoscale 2, 2015.
15. H. Khanehzaei, M. B Ahmad, K. Shameli, Z. Ajdari, Int. J. Electrochem. Sci. 9, 8189 – 8198 (2014).
16. H. Kiziltaş, D. Tekin, Brilliant Engineering 4, 26-29 (2020).
17. N. Kazemi, M. Mahdavi Shahri, J. Inorg. Organometal. Polym. Mater. 27, 1264–1273(2017).
18. S. Shojaee, M. Mahdavi Shahri, Appl Organometal Chem. 8,138-143, (2016).
19. Z. Dastjerdi, A.M. Aarabi, M. Shafiee, M. Afarani, E. Ghasemi, J. Color Sci. Techno. 11, 287-295 (2018).