Investigating the quantum mechanics of the absorption of the alkylating agent dacarbazine on carbon nanotubes functionalized with the amino acid alanine as promising nanocarriers for drug delivery
Subject Areas : ModelingMohammad Hassan Jamshidi 1 , Neda Hasanzadeh 2 , Hooriye Yahyaei 3 , Amir Bahrami 4
1 - Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
2 - Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
3 - Department of Chemistry, Zanjan Branch, Islamic Azad University, Zanjan, Iran
4 - Department of Physics, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
Keywords: Anticancer drug dacarbazine, Carbon Nanotube, Amino acid alanine, Quantum Mechanics.,
Abstract :
Drug delivery by drug nanocarriers is a new window in the science of drug delivery and not only helps to reduce the side effects of drugs but also plays a significant role in improving drug release efficiency. On the other hand, carbon nanotubes have unique properties, which have always attracted the attention of researchers. This research is focused on the efficiency of alanine-functionalized carbon nanotubes (Alanine-SWNTs) in the delivery of the anticancer drug dacarbazine (DAC) through density functional theory (DFT) calculations. Calculations for non-functionalized carbon nanotubes (SWNTs) are also included for comparison. The results show that the absorption of the anticancer drug dacarbazine with non-functionalized carbon nanotubes (SWNTs) is spontaneous and exothermic, but due to its insolubility in water, the application of this complex is limited. The complex formed by dacarbazine drug and carbon nanotube functionalized with amino acid Alanine has a greater absorption area and greater solubility than the non-functionalized carbon nanotube. Quantum mechanical calculations show that carbon nanotubes functionalized with the amino acid alanine are more reactive than non-functionalized carbon nanotubes. As a result, carbon nanotubes functionalized with alanine amino acid will be promising for dacarbazine absorption in drug delivery applications.
مراجع [1] S. Ahmadi, A. Hosseinian, P. Delir Kheirollahi Nezhad, A. Monfared, and E. Vessally, Iranian Journal of Chemistry and Chemical Engineering. 38, (2019), p. 1.
[2] J. Jumintono, S. Alkubaisy, K. Singh, I. Mikolaychik, and L. Morozova, Archives of Razi Institute. 76, (2021), p. 115. https://doi.org/10.22092/ari.2021.355901.1735.
[3] F. Gharibzadeh, E. Vessally, L. Edjlali, M. Es' haghi, and R. Mohammadi, Iranian Journal of Chemistry and Chemical Engineering (IJCCE). 39, (2020), p. 51. https://doi.org/10.30492/ijcce.2020.106867.3568.
[4] V. Khodadadi, N. Hasanzadeh, H. Yahyaei, and A. Rayatzadeh, J. Chil. Chem. Soc. 66, (2021), p. 5365. http://dx.doi.org/10.4067/s0717-97072021000405365
[5] H. Yahyaei, S. Sharifi, S. Shahab, M. Sheikhi, and M. Ahmadianarog, Lett. Org. Chem. 18, (2021), p. 115. https://doi.org/10.2174/1570178617999200818104322.
[6] Y. Cao, M. El-Shorbagy, K. Sharma, S. Alamri, A.A. Rajhi, A.E. Anqi, and A. El-Shafay, J. Mol. Liq. 344, (2021), p. 117967. https://doi.org/10.1016/j.molliq.2021.117967.
[7] H.R.A.K. Al-Hetty, M.S. Al-Lami, S.F. Jawad, I. Waleed, A. Mohamed, M.M. Kadhim, and M. Derakhshandeh, J. Biotechnol. 359, (2022), p. 142. https://doi.org/10.1016/j.jbiotec.2022.10.001.
[8] J.Y. Li, Y.H. Tang, L. Tang, and L.Y. Chen, J. Mol. Model. 28, (2022), p. 249. https://doi.org/10.1007/s00894-022-05248-y.
[9] F. Marofi, O.F. Abdul‐Rasheed, H.S. Rahman, H.S. Budi, A.T. Jalil, A.V. Yumashev, A. Hassanzadeh, M. Yazdanifar, R. Motavalli, and M.S. Chartrand, Cancer Science. 112, (2021), p. 3427. https://doi.org/10.1111/cas.14993.
[10] E. Vessally, and A. Hosseinian, Iran. J. Chem. Chem. Eng. Research Article Vol. 40, (2021). https://doi.org/10.30492/ijcce.2020.122123.3987.
[11] J. Kaur, G. Gill, and K. Jeet, Elsevier., (2019), p. 113.
[12] Sarjito, M. Elveny, A.T. Jalil, A. Davarpanah, M. Alfakeer, A.A. Awadh Bahajjaj, and M. Ouladsmane, International Journal of Chemical Reactor Engineering. 19, (2021), p. 1179. https://doi.org/10.1515/ijcre-2021-0063.
[13] B. Hashemzadeh, L. Edjlali, P. Delir Kheirollahi Nezhad, and E. Vessally, Chemical Review and Letters. 4, (2021), p. 232. https://doi.org/10.22034/crl.2020.187273.1087.
[14] S. Chupradit, A.T. Jalil, Y. Enina, D.A. Neganov, M.S. Alhassan, S. Aravindhan, and A. Davarpanah, Journal of Nanomaterials. 2021, (2021), p. 1. https://doi.org/10.1155/2021/3250058.
[15] Q. Zou, P. Xing, L. Wei, and B. Liu, Rna. 25, (2019), p. 205. https://doi. org/10.1261/rna.069112.118.
[16] Z. Li, A.L.B. de Barros, D.C.F. Soares, S.N. Moss, and L. Alisaraie, Int. J. Pharm. 524, (2017), p. 41. https://doi.org/10.1016/j.ijpharm.2017.03.017.
[17] W. Mu, Q. Chu, Y. Liu, and N. Zhang, Nano-Micro Letters. 12, (2020), p. 1. https://doi.org/10.1007/s40820-020-00482-6.
[18] R.V. Mundra, X. Wu, J. Sauer, J.S. Dordick, and R.S. Kane, Curr. Opin. Biotechnol. 28, (2014), p. 25. https://doi.org/10.1016/j.copbio.2013.10.012.
[19] N.K. Mehra, and S. Palakurthi, Drug Discovery Today. 21, (2016), p. 585. https://doi.org/10.1016/j.drudis.2015.11.011.
[20] M.I. Sajid, U. Jamshaid, T. Jamshaid, N. Zafar, H. Fessi, and A. Elaissari, Int. J. Pharm. 501, (2016), p. 278. https://doi.org/10.1016/j.ijpharm.2016.01.064.
[21] N. Saifuddin, A. Raziah, and A. Junizah, Journal of Chemistry. 2013, (2013). https://doi.org/10.1155/2013/676815.
[22] R.H. Baughman, A.A. Zakhidov, and W.A. De Heer, science. 297, (2002), p. 787. https://doi.org/10.1126/science.1060928.
[23] K. Balasubramanian, Chemically Functionalized Carbon Nanotubes. small. 1, p. 180. https://doi.org/10.1002/smll.200400118.
[24] K. Balasubramanian, and M. Burghard, small. 1, (2005), p. 180. https://doi.org/10.1002/smll.200400118.
[25] J. Chen, S. Chen, X. Zhao, L.V. Kuznetsova, S.S. Wong, and I. Ojima, Journal of the American Chemical Society. 130, (2008), p. 16778. https://doi.org/10.1021/ja805570f.
[26] Z. Ou, B. Wu, D. Xing, F. Zhou, H. Wang, and Y. Tang, Nanotechnology. 20, (2009), p. 105102. https://doi.org/10.1088/0957-4484/20/10/105102.
[27] M. Eslami, M. Moradi, and R. Moradi, Vacuum. 133, (2016), p. 7.
[28] F. Molani, S. Jalili, and J. Schofield, Int. J. Hydrogen Energy. 41, (2016), p. 7431.
[29] X. Ji, C. Hou, Y. Gao, Y. Xue, Y. Yan, and X. Guo, Food & function. 11, (2020), p. 163. https://doi.org/10.1039/C9FO02171J.
[30] P. Singh, S. Campidelli, S. Giordani, D. Bonifazi, A. Bianco, and M. Prato, Chem. Soc. Rev. 38, (2009), p. 2214. https://doi.org/10.1039/B518111A.
[31] I. Kumar, S. Rana, and J.W. Cho, Chemistry–A European Journal. 17, (2011), p. 11092. https://doi.org/10.1002/chem.201101260.
[32] J.L. Bahr, and J.M. Tour, J. Mater. Chem. 12, (2002), p. 1952. https://doi.org/10.1039/B201013P.
[33] A. Bensghaïer, F. Mousli, A. Lamouri, P.S. Postnikov, and M.M. Chehimi, Chemistry Africa. 3, (2020), p. 535. https://doi.org/10.1007/s42250-020-00144-5.
[34] P. Oskin, I. Demkina, E. Dmitrieva, and S. Alferov, Nanomaterials. 13, (2023), p. 1630. https://doi.org/10.3390/nano13101630.
[35] C. Cao, Y. Zhang, C. Jiang, M. Qi, and G. Liu, ACS Applied Materials & Interfaces. 9, (2017), p. 5031. https://doi.org/10.1021/acsami.6b16108.
[36] A.A. Mohamed, Z. Salmi, S.A. Dahoumane, A. Mekki, B. Carbonnier, and M.M. Chehimi, Adv. Colloid Interface Sci. 225, (2015), p. 16. https://doi.org/10.1016/j.cis.2015.07.011.
[37] S.T.R. Naqvi, T. Rasheed, D. Hussain, M.N. ul Haq, S. Majeed, N. Ahmed, and R. Nawaz, J. Mol. Liq. 297, (2020), p. 111919. https://doi.org/10.1016/j.molliq.2019.111919.
[38] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, and S. Su, J. Comput. Chem. 14, (1993), p. 1347. https://doi.org/10.1002/jcc.540141112.
[39] M. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, and G. Petersson, Gaussian 09, revision D. 01. 2009, Gaussian, Inc., Wallingford CT.
[40] D. Olegovich Bokov, A.T. Jalil, F.H. Alsultany, M.Z. Mahmoud, W. Suksatan, S. Chupradit, M.T. Qasim, and P. Delir Kheirollahi Nezhad, Molecular Simulation. 48, (2022), p. 438. https://doi.org/10.1080/08927022.2021.2025234.
[41] J. Tomasi, and M. Persico, Chem. Rev. 94, (1994), p. 2027. https://doi.org/10.1021/cr00031a013.
[42] P. Singla, M. Riyaz, S. Singhal, and N. Goel, Phys. Chem. Chem. Phys. 18, (2016), p. 5597. https://doi.org/10.1039/C5CP07078C.
[43] H.K. Hussein, N.M. Aubead, H.H. Kzar, Y.S. Karim, A.H. Amin, M.E. Al-Gazally, T.I. Ahmed, M.A. Jawad, A.T. Hammid, and A.T. Jalil, Diabetology & Metabolic Syndrome. 14, (2022), p. 74. https://doi.org/10.1186/s13098-022-00844-7.
[44] A. Soltani, M.T. Baei, E.T. Lemeski, S. Kaveh, and H. Balakheyli, J. Phys. Chem. Solids. 86, (2015), p. 57. https://doi.org/10.1016/j.jpcs.2015.06.008.
[45] M.K. Hazrati, Z. Javanshir, and Z. Bagheri, J. Mol. Graphics Modell. 77, (2017), p. 17. https://doi.org/10.1016/j.jmgm.2017.08.003.
[46] S. Chupradit, M.K. Nasution, H.S. Rahman, W. Suksatan, A.T. Jalil, W.K. Abdelbasset, D. Bokov, A. Markov, I.N. Fardeeva, and G. Widjaja, Anal. Biochem. 654, (2022), p. 114736. https://doi.org/10.1016/j.ab.2022.114736.