Increasing the efficiency of dye-sensitized solar cells using plasmonic gold nanocrystals with SiO2 and TiO2 coating
Subject Areas : Synthesis and Characterization of NanostructuresLeila Shabani 1 , Ahmad Mohammadi 2 * , ُTahmineh Jalali 3
1 - Department of Physics, Faculty of Science, Persian Gulf University, Bushehr. Iran
2 - Department of Physics, Faculty of Science, Persian Gulf University, Bushehr. Iran
3 - Department of Physics, Faculty of Science, Persian Gulf University, Bushehr. Iran
Keywords: Absorption, Surface plasmon, Au@SiO2 nanostructure, Au@TiO2 nanostructure.,
Abstract :
In this research, the synthesis of plasmonic nanoparticles was carried out by chemical dissolution method in three steps. Then, Au@TiO2 and Au@SiO2 core-shell nanostructures have been investigated. These nanostructures were used as photoanode in dye-sensitized solar cells (DSSCs). Parameters such as short circuit current, open circuit voltage, fill factor and conversion efficiency of DSSCs were obtained. The cell in which Au@TiO2 synthesized with mercaptoacetic acid ligand is used, has the highest efficiency. The primary causes of this are the heightened near-field effect of gold nanoparticles (AuNP) and the creation of enhanced photocurrent due to plasmonics.
1. Peng J. Lu, L., & Yang, H, reviews, 19, 255-274. (2013)
2. Kim, H. Nam, S. Jeong, J. Lee, S., Seo, J., Han, H., & Kim, Y. Korean Journal of Chemical Engineering, 31, 1095-1104. (2014)
3. Ahn, S., Rourke, D., & Park, W, Journal of Optics, 18(3), 033001 (2016).
4. Palomares, E., Clifford, J. N., Haque, S. A., Lutz, T., & Durrant, J. R,. Journal of the American Chemical Society, 125(2), 475-482. (2013).
5. Wang, Q., Ito, S., Grätzel, M., Fabregat-Santiago, F., Mora-Sero, I., Bisquert, J., & Imai, H, The Journal of Physical Chemistry B, 110(50), 25210-25221. (2006)
6. Wang, S. Y., Borca-Tasciuc, D. A., & Kaminski, D. A, Journal of Applied Physics, 109(7). (2011).
7. Atwater, H. A., & Polman, A, . Nature materials, 9(3), 205-213. (2010).
8. Barnes, W. L., Dereux, A., & Ebbesen, T. W. . nature, 424(6950), 824-830.(2003).
9. Ringe, E., McMahon, J. M., Sohn, K., Cobley, C., Xia, Y., Huang, J., Van Duyne, R. P, The Journal of Physical Chemistry C, 114(29), 12511-12516. (2010).
10. Nahm, C., Choi, H., Kim, J., Jung, D. R., Kim, C., Moon, J., Park, B, . Applied Physics Letters, 99(25).(2011).
11. Balakrishnan, S., Bonder, M. J., & Hadjipanayis, G. C, Journal of magnetism and magnetic materials, 321(2), 117-122.(2009).
12. Lauhon, L. J., Gudiksen, M. S., Wang, D., Lieber, C. M, . nature, 420(6911), 57-61.(2002).
13. Kalele, S., Gosavi, S. W., Urban, J., & Kulkarni, S. K,. Current science, 1038-1052. (2006).
14. N’konou, K., Peres, L., & Torchio, P, Plasmonics, 13, 297-303. (2018).
15. Chen, B., Zhang, W., Zhou, X., Huang, X., Zhao, X., Wang, H., Yang, S, Nano Energy, 2(5), 906-915.(2013).
16. Li, Y., Zhou, Y., Wang, Y., Zhou, R., Ling, Q., Niu, H., Xu, J,. Electrochimica Acta, 293, 230-239.(2019).
17. Li, B., Wang, X., Yan, M., & Li, L, Materials Chemistry and Physics, 78(1), 184-188.(2003).
18. Li, B. R., Wang, X. H., Yan, M., & Li, L. T, , Key Engineering Materials, 224, 577-580.(2002).