Fields of application of artificial intelligence programs in order to support students with learning disabilities
Subject Areas : Psychology of Technology Communication
Zahra asadi
1
,
Sajjad Amini Manesh
2
*
1 - Department of Psychology, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
2 - Assistant Professor, Department of Psychology, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
Keywords: artificial intelligence programs, educational support, students, learning disabled, thematic analy,
Abstract :
Paying attention to students' problems and planning to solve their educational problems is one of the inevitable missions of the educational system of every country. In this regard, the emergence of modern technologies such as artificial intelligence have been able to solve some of the educational problems of students with greater speed and ease. Therefore, the decision to use this technology easily and without considering the situation and conditions governing the society does not seem reasonable. Paying attention to this matter, taking into account disabled and weak students in learning, requires more considerations. Based on this, the current research was conducted with a qualitative approach with the aim of studying and investigating the fields of application of artificial intelligence programs in order to support academically disabled students. The study population of the research included all specialists, academics, researchers and experts. Among these people, 29 people made up the sample under investigation and the determination of these people was using the theoretical saturation technique. The data of this research has been analyzed using thematic analysis. The findings showed that the use of artificial intelligence requires the existence of effective requirements, including "organization", "user-centered" and "comprehensiveness". In this way, there are many application obstacles, including: They are "structural deficiencies", "procedural deficiencies", "scientific and experimental gaps" and "user limitations". Another theme of the research was "dual consequences", which includes "positive consequences" and "negative possibilities".
اهرمی، راضیه؛ شوشتری، مژگان؛ گلشنی منزه، فرشته؛ کمرزرین، حمید. (1390). اثربخشي آموزش دقت بر توانايي خواندن دانش آموزان نارساخوان دختر پاية سوم ابتدايي شهر اصفهان، روانشناسی افراد استثنایی، 3 (1)، 139- 152.
ایروانی، محمدحسین؛ میر، علی؛ سعادتمند منشادی، درسا. (1402). مرور سیستماتیک تاثیر هوش مصنوعی بر نظام های آموزشی جهان. 6 (69).
حنیفه، مینا. (1402). بررسی نقش هوش مصنوعی به عنوان ابزاری در جهت بهبود عملکرد تحصیلی در دانش¬آموزان با اختلال یادگیری ریاضی. تهران: سومین کنفرانس بین المللی و ششمین کنفرانس ملی مدیریت، روان شناسی و علوم رفتاری.
حنیفه زاده نودهی، فاطمه. (1402). استفاده از هوش مصنوعی و فناوری های نوین آموزشی در محتوای آموزشی مدارس. تهران: اولین کنفرانس بین المللی پژوهش های مدیریت، تعلیم و تربیت در آموزش و پرورش.
رضایی، فهیمه؛ فقیه عبدالهی، احمد. (1402). بررسی کاربرد هوش مصنوعی در نظام تعلیم و تربیت. هشتمین کنفرانس ملی رویکردهای نوین در آموزش و پژوهش.
صفاری¬نیا، مهزاد. (1403). هوش مصنوعی و حق برآموزش کودکان. دوفصلنامه مطالعات فقه و حقوق رسانه، ۶ (۱)، 133- 152.
کافی، سید موسی؛ زینعلی، شینا؛ خسروجاوید، مهناز؛ میاه¬نهری، فریده. (1392). مقایسه¬ی ویژگی¬های رفتاری و رشد اجتماعی کودکان با و بدون ناتوانی یادگیری. ناتوانی های یادگیری، 2 (4)، 139- 124.
متقی دستنائی، افشین؛ کرمی، علی؛ پیری فتحآباد، میلاد. (1403). آسیب شناسی کاربردهای هوش مصنوعی در آموزش با استفاده از روش تحلیل سوآت. تعامل انسان و اطلاعات، 11 (2).
Ajani, O. A., Gamede, B., & Matiyenga, T. C. (2025). Leveraging artificial intelligence to enhance teaching and learning in higher education: Promoting quality education and critical engagement. Journal of Pedagogical Sociology and Psychology, 7(1), 54-69.
Bressane, A., Zwirn, D., Essiptchouk, A., Saraiva, A. C. V., Carvalho, F. L. C., Jorge Kennety Silva Formiga, Líliam César de Castro Medeiros, Rogério Galante Negri, Understanding the role of study strategies and learning disabilities on student academic performance to enhance educational approaches: A proposal using artificial intelligence, Computers and Education: Artificial Intelligence, Volume 6.
Dahri, N. A., Yahya., N, Al-Rahmi, W. M., Vighio, M. S., Alblehai, F., Soomro, R. B., Shutaleva, A. (2024). Investigating AI-based academic support acceptance and its impact on students’ performance in Malaysian and Pakistani higher education institutions. Education and Information Technologies, Volume 10, Issue 11.
Drigas, A., & Ioannidou, R. (2012). Artificial intelligence in special education: a decade review. International Journal of Engineering Education, 28, 1366-1372.
Drigas, A., & Ioannidou, R.-E. (2013). A review on artificial intelligence in special education. Communications in Computer and Information Science, 385–391.
Harry, A., Sayudin, S. (2023). Role of AI in Education. Injuruty: Interdiciplinary Journal and Humanity, 2 (3), 260- 268.
Lal, Rai., Saluja, N., Pimplapure, A. (2023). AI and Learning Disabilities: Ethical and Social. Educational Administration: Theory and Practice. Considerations in Educational Technology, 29 (4), 1-8.
Micheni, E., Machii, J., Murumba, j. (2024). The Role of Artificial Intelligence in Education. Information Technology, 7(1), 43-54.
Ouherrou, N., Elhammoumi, O., Benmarrakchi, F., & El Kafi, J. (2019). Comparative study on emotions analysis from facial expressions in children with and without learning disabilities in virtual learning environment. Education and Information Technologies, 24(2), 1777–1792.
Panjwani-Charani, S. & Zhai, X. (in press). AI for Students with Learning Disabilities: A Systematic Review. In X. Zhai & J. Krajcik (Eds.), Uses of Artificial Intelligence in STEM Education (pp. xx-xx). Oxford, UK: Oxford University Press.
Rello, L., Romero, E., Rauschenberger, M., Ali, A., Williams, K., Bigham, J. P., & White, N. C. (2018). Screening dyslexia for English using HCI measures and machine learning. Proceedings of the 2018 International Conference on Digital Health, 80–84.
Zvoncak, V., Mekyska, J., Safarova, K., Smekal, Z., & Brezany, P. (2019). New approach of dysgraphic handwriting analysis based on the tunable q-factor wavelet transform. In 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO).