Application of a New Model for Magnetorheological Damper and Investigation of Its Effectiveness in Vertical Mass Isolated Structures
Subject Areas : Analysis of Structure and Earthquake
Mohamad Shahrokh Abdi
1
*
,
مسعود نکوئی
2
1 - Department of Civil Engineering, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
2 - گروه مهندسی عمران، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی ، تهران، ایران
Keywords: MR damper, nonlinear, convergence, seismic control, displacement.,
Abstract :
Due to the controllability of magneto-rheological (MR) damper, the application of these dampers in seismic control of structures has been considered. One of the challenges of modeling these dampers is their complex nonlinear behavior. Using existing parametric models for these dampers in seismic analysis of structures, causes divergence issues and requires more time to analyze the structures. In this research, a velocity and displacement-based nonlinear polynomial model for MR damper is presented. The proposed model is a four-state model and is based on experimental results. The current is considered as a control parameter to provide the controllability of this model. Finally, to evaluate the efficiency of the proposed model, its application in the seismic control of vertical mass isolated structures is investigated. The results indicate the high accuracy of the model for calculating the damper force and reduce the required time for analysis of the structure. Moreover, the convergence issues are removed using this model.
[1] عبدی، محمدشاهرخ؛ نکویی، مسعود؛ جعفریصحنهسرایی، محمدعلی. کاربرد میراگرهای MR در کنترل لرزهای سازهها به روش جداسازی جرمی قائم. فصلنامه علوم و مهندسی زلزله، دوره 8، شماره 2، مرداد 1400: 57-66.
https://doi.org/10.48303/bese.2021.242931
[2] Carlson JD, Catanzarite DM, Clair KAS. Commerical Magneto-Rheological Fluid Devices. International Journal of Modern Physics B. 1996; 10(23n24): 2857-2865.
https://doi.org/10.1142/s0217979296001306
[3] Pourshayan AE, Rabbani A, Farahani S, Rabbani Y, Ahmadi Danesh Ashtian H, Shariat M, Gholi Nejad M, Emami Satellou AA. Modeling and Simulation of the Magnetorheological Fluid Sleeve Valve. Iranian Journal of Chemical Engineering. 2021; 18(1): 25-35.
https://doi.org/10.22034/ijche.2021.131248
[4] Rossi A, Orsini F, Scorza A, Botta F, Belfiore NP, Sciuto SA. A Review on Parametric Dynamic Models of Magnetorheological Dampers and Their Characterization Methods. Actuators. 2018; 7(2): 16. https://doi.org/10.3390/act7020016
[5] Stanway R, Sproston JL, Stevens NG. Non-linear identification of an electrorheological vibration damper. IFAC Identification and System Parameter Estimation. 1985; 18(5): 195-200.
https://doi.org/10.1016/S1474-6670(17)60558-5
[6] Stanway R, Sproston JL, Stevens NG. Non-linear modelling of an electro-rheological vibration damper. Journal of Electrostatics. 1987; 20: 167-84.
https://doi.org/10.1016/0304-3886(87)90056-8
[7] Gamota DR, Filisko FE. Dynamic mechanical studies of electrorheological materials: Moderate frequencies. Journal of Rheology. 1991; 35: 399-425.
https://doi.org/10.1122/1.550221
[8] Li WH, Yao GZ, Chen G, Yeo SH, Yap FF. Testing and steady state modelling of a linear MR damper under sinusoidal loading. Smart Materials and Structures. 2000; 9: 95-102.
https://doi.org/10.1088/0964-1726/9/1/310
[9] Wen YK. Method for Random Vibration of Hysteretic Systems. Journal of the Engineering Mechanics Division. 1976; 102(2): 249-263.
https://doi.org/10.1061/JMCEA3.0002106
[10] Spencer BF, Dyke SJ, Sain MK, Carlson JD. Phenomenological model for magnetorheological dampers. Journal of Engineering Mechanics. 1997; 123: 230-238.
https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230)
[11] Song X, Ahmadian M, Southward SC. Modeling magnetorheological dampers with application of nonparametric approach. Journal of Intelligent Material Systems and Structures. 2005; 16: 421-432.
https://doi.org/10.1177/1045389X05051071
[12]Bajkowski J, Nachman J, Shillor M, Sofonea M. A model for a magnetorheological damper. Mathematical and Computer Modelling. 2008; 48: 56-68.
https://doi.org/10.1016/j.mcm.2007.08.014
[13] Metered H, Bonello P, Oyadiji SO. The experimental identification of magnetorheological dampers and evaluation of their controllers. Mechanical Systems and Signal Processing. 2010; 24: 976-94.
https://doi.org/10.1016/j.ymssp.2009.09.005
[14] Yang MG, Li CY, Chen ZQ. A new simple non-linear hysteretic model for MR damper and verification of seismic response reduction experiment. Engineering Structures. 2013; 52: 434-445.
https://doi.org/10.1016/j.engstruct.2013.03.006
[15]Arias Montiel M, Floreán Aquino KH, Francisco Agustín E, Piñón López DM, Santos Ortiz RJ, Santiago Marcial BA. Experimental Characterization of a Magnetorheological Damper by a Polynomial Model. 2015 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE); Cuernavaca, Morelos, Mexico; November 24-27, 2015.
https://doi.org/10.1109/ICMEAE.2015.31
[16] Yu J, Dong X, Zhang Z. A novel model of magnetorheological damper with hysteresis division. Smart Materials and Structures. 2017; 26(10): 1-15.
https://doi.org/10.1088/1361-665x/aa87d6
[17] Rahmat Mohd S, Hudha K, Abd Kadir Z, Amer Noor H, Abd Rahman Muhammad Luqman H, Abdullah S. Modelling and validation of magneto-rheological fluid damper behaviour under impact loading using interpolated multiple adaptive neuro-fuzzy inference system. Multidiscipline Modeling in Materials and Structures. 2020; 16(6): 1395-1415. https://doi.org/10.1108/MMMS-10-2019-0187
[18] Milanchian R, Hosseini M, Nekooei M. Vertical isolation of a structure based on different states of seismic performance. Earthquakes and Structures. 2017; 13(2): 103-118.
https://doi.org/10.12989/eas.2017.13.2.103
[19] Abdi MS, Nekooei M, Jafari MA. Numerical Investigation of a New Method for Seismic Control of Structures. KSCE Journal of Civil Engineering. 2021; 25(1): 162-172.
https://doi.org/10.1007/s12205-020-2368-0
[20] Nekooei M, Rahgozar N, Rahgozar N. Vertical seismic isolated rocking-core system. Proceedings of the Institution of Civil Engineers - Structures and Buildings. 2021; 174(8): 627-636.
https://doi.org/10.1680/jstbu.19.00158
[21] Nekooei M, Ziyaeifar M. Vertical siesmic isolation of structures. Journal of Applied Sciences. 2008; 8: 4656-4661.
https://doi.org/10.3923/jas.2008.4656.4661
[22] Milanchian R, Hosseini M. Study of vertical seismic isolation technique with nonlinear viscous dampers for lateral response reduction. Journal of Building Engineering. 2019; 23: 144-154.
https://doi.org/10.1016/j.jobe.2019.01.026
[23]Abdi MS, Nekooei M, Jafari MA. Seismic control of multi-degrees-of-freedom structures by vertical mass isolation method using MR dampers. Earthquake Engineering and Engineering Vibration. 2024; 23(2): 503-510.
https://doi.org/10.1007/s11803-024-2251-y
[24] Uz ME, Hadi MNS. Optimal design of semi active control for adjacent buildings connected by MR damper based on integrated fuzzy logic and multi-objective genetic algorithm. Engineering Structures. 2014; 69: 135-48.
https://doi.org/10.1016/j.engstruct.2014.03.006
[25] Ancheta TD, Darragh RB, Stewart JP, Seyhan E, Silva WJ, Chiou BS, Wooddell KE, Graves RW, Kottke AR, Boore DM, Kishida T, Donahue JL. NGA-West2 Database. Earthquake Spectra. 2014; 30(3): 989-1005.
https://doi.org/10.1193/070913EQS197M
[26] Karnopp D, Crosby MJ, Harwood RA. Vibration Control Using Semi-Active Force Generators. Journal of Engineering for Industry. 1974; 96(2): 619-626.
https://doi.org/10.1115/1.3438373