Comparison of Exploitation Criteria and Acceleration of Long Diagrid Steel Structures with Environmental Frame System Based on Dynamic Wind Analysis
Subject Areas : Analysis of Structure and Earthquakemehdi hooshmand 1 , Hassan Haji Kazemi 2 * , Seyed Alireza Zareei 3
1 - Islamic Azad university
2 - Department of Civil Engineering, Technical and Engineering Faculty, Ferdowsi University, Mashhad, Iran
3 - Department of Civil Engineering, Technical and Engineering Faculty, Isfahan Islamic Azad University (Khorasgan), Isfahan, Iran
Keywords: tall building, near-field earthquake, Diagrid system, Environmental frame system, Comfort and acceleration standards,
Abstract :
Considering the widespread use of diagrid systems in tall buildings, it is necessary to investigate the behavior of this structural system against the wind and control comfort criteria based on acceleration. According to different regulations, it is evident that there is not much guidance for the design of this structural system and its requirements have not yet been included in the design regulations. Therefore, one of the most important goals of the current research is to investigate and use the Diagrid structural system as one of the modern structural systems in high-rise buildings. Another goal of this research is to compare the performance of the diagrid system with the environmental pipe system. Accordingly, the effect of various parameters including the acceleration of floors and shear of the base under dynamic wind load has been evaluated. It is expected that the performance of the diagonal network will be evaluated with a more detailed understanding of the diagonal network in tall structures and the evaluation of the operation and comfort criteria based on the acceleration against the wind load using dynamic time history analysis applying Cholesky, ergodic and AP methods. The results have been compared with the formulas of the ASCE7 regulation and the AIJ-GBV-2004 and ISO 10137:2007 comfort criteria and the National Building Code of Canada (NBCC). These investigations indicate that the acceleration of the diagrid system floors based on ASCE7 wind dynamic response prediction equations, has exceeded the permissible limit of ASCE 7 regulation by 20 milli-g (20Gal). This is due to the high estimation of ASCE 7 equations compared to the results of wind time history analysis. In such a way that in the 50-, 70-, and 100-story buildings, the maximum accelerations of the roof obtained from the ASCE 7 equation are 1.83, 2.07, and 1.87 times the results of the dynamic analysis of wind time history, respectively.
_||_