Synthesis of ZnO:Ag nanoparticles and Evaluation its antimicrobial activity against common Isolated bacterial pathogens from dairy products
Subject Areas : Biotechnological Journal of Environmental Microbiology
1 - Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
Keywords: Nanoparticle, Zinc oxide, Staphylococcus, Escherichia coli, Antibiogram,
Abstract :
Synthetic nanoparticles have unique physical and chemical properties. The most important characteristic of these nanoparticles is having a higher surface area than their counterparts of larger size. In this research 45 samples of dairy raw products after dilution of samples, to isolate Staphylococcus aureus and Escherichia coli were transferred to the Baird Parker Agar and Sorbitol Mac Conkey Agar media respectively, and were identified using a series of specific tests. Zinc oxide-doped nanopowder was synthesized by the sol-gel method. The antimicrobial effects of nanoparticles were investigated by the well diffusion method. The minimum inhibitory concentration (MIC) of Zinc oxide-doped nanopowder and minimum bactericidal concentration (MBC) were determined. The mean diameter zone of the inhibitory growth of strains of E. coli PTCC 1399 and E. coli (1) and E. coli (2) were 22.5, 18.5, and 15.4 mm respectively at a concentration of 50 mg/ml and the mean diameter zone of the inhibitory of S. aureus PTCC 1189, S. aureus (1) and S. aureus (2) standard strains were 24.5, 20.4 and 19.5 mm. In this concentration. MIC for E. coli PTCC 1399 was 1.75, and E. coli (isolate 1) and E. coli (isolate 2) were 1.55 and 3.13 mg/ml, respectively. In the case of further experiments, this nanoparticle can be used as a preservative.
سالیانی، م . جلال، ر . گوهرشادی، ا.تاثیرات pH و دما بر فعالیت ضد باکتریایی نانو ذرات اکسیبد روی. پایان نامه کارشناسی ارشد. دانشگاه فردوسی مشهد. 1390. Azam, . A Ahmed, . A.S. Oves, M. Khan, M.S.. Habib, S.S Memic, A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a Comparative study, Int. J. Nanomedicine 7 (2011) 6003–6009. Barzegari Firouzabadi F., Marzban Z., Khaleghizadeh S., Daneshmand F., Mirhosseini M. Combined effects of zinc oxide nanoparticle and malic acid to inhibit Escherichia coli and Staphylococcus aureus. Iran J Med Microbiol. 2016; 10 (5): 52-59. Emami-Karvani, Z. Chehrazi, P. Antibacterial activity of ZnO nanoparticle on Gram positive and gram-negative bacteria, Afr. J. Microbiol. Res. 5 (2011) 1368–1373. Espitia, Paula Judith Perez, et al. "Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications." Food and Bioprocess Technology 5.5 (2012): 1447-1464. Faramarzi T, Jonidi jafari A, Dehghani S, Mirzabeygi M, Naseh M, Rahbar Arasteh H. A Survey of Bacterial Contamination of Food Supply in the West of Tehran. Journal of Fasa University of Medical Sciences/ May 2012/ Vol.2/ No.1/ P 11-18. Ghosh, Tanushree, Anath Bandhu Das, Bijaylaxmi Jena, and Chinmay Pradhan. "Antimicrobial effect of silver zinc oxide (Ag-ZnO) nanocomposite particles." Frontiers in Life Science 8, no. 1 (2015): 47-54. Gündoğan N, Citak S, Turan E. Slime production, DNase activity and antibiotic resistance of Staphylococcus aureus isolated from raw milk, pasteurised milk and ice cream samples. Food Control. 2006;17(5):389-92. Hu, Yawei, Huirong He, Xia Kong, and Yangmin Ma. "Synthesis and Antibacterial Activities of Ag/ZnO Nanoparticles." In Key Engineering Materials, vol. 697, pp. 714-717. Trans Tech Publications, 2016. Matai, I., Sachdev, A., Dubey, P., Kumar, S. U., Bhushan, B., & Gopinath, P. (2014). Antibacterial activity and mechanism of Ag–ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli. Colloids and Surfaces B: Biointerfaces, 115, 359-367.
Venkatasubramanian, K., & Sundaraj, S. (2014). Antibacterial activity of Zinc Oxide and Ag doped Zinc Oxide Nanoparticles against E. coli. Chem Sci Rev Lett, 3, 40-44
. Wang, Chao, Lian-Long Liu, Ai-Ting Zhang, Peng Xie, Jian-Jun Lu, and Xiao-Ting Zou. "Antibacterial effects of zinc oxide nanoparticles on Escherichia coli K88." African Journal of Biotechnology 11, no. 44 (2012): 10248-10254. Wang, Shilei, Jie Wu, Hao Yang, Xiangyu Liu, Qiaomu Huang, and Zhong Lu. "Antibacterial activity and mechanism of Ag/ZnO nanocomposite against anaerobic oral pathogen Streptococcus mutans." Journal of Materials Science: Materials in Medicine 28, no. 1 (2017): 23
.