Evaluating the Function of Melting Point Temperature of Phylogenetic Genes for Detecting the Taxons of Snakes
Subject Areas : Journal of Animal BiologyLeila Moradi Jaferi 1 , Sakineh Kazemi Noureini 2 * , Eskandar Rastegar Pouyani 3
1 - Department of Biology, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar, Iran
2 - Department of Biology, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar, Iran
3 - Department of Biology, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar, Iran
Keywords: Melting temperature, Molecular phylogeny, Snakes, Cytochrom b gene, 16 S gene,
Abstract :
Deoxyribonucleic acid (DNA) is the molecule encoding the genetic instructions used in the growth and functioning of all living organisms and is very appropriate for biological information storage. Todays, the DNA sequences are regarded as sources for detecting the species and their phylogenetic relationships. Despite the modern technologies including the next generation sequencing and DNA barcoding, there is still a need for a fast, cheap, and reliable method for identifying species particularly in ambiguous morphologically-defined organisms. This study evaluated to see if some biophysical chemistry properties of PCR products like melting point can be used before sequencing to identify the samples of interest. Determining the melting temperature of PCR products is available in most available measurements in molecular biology labs. The present study focused on the potential use of melting temperature related to PCR products of 16S and Cyt b (highly used genes in phylogenetic studies) using a real-time PCR machine to identify different species of snakes from Iran. The preliminary results of these two genes are promising although extra steps are required to improve its sensitivity. The development of this method can be used in a rapid evaluation of species.
1. Degli Esposti M., De Vries S., Crimi M., Ghelli A., Patarnello T., Meyer A. 1993. Mitochondrial cytochrome b: evolution and structure of the protein. Biochimica et Biophysica Acta(BBA)-Bioenergetics,1143(3), 243-271.
2. Dhama K., Chakraborty S., Tiwari R., Verma A.K., Saminathan M., Malik Y.S., Nikousefat Z., Javdani M., Khan R.U., 2014. A concept paper on novel technologies boosting production and safeguarding health of humans and animals. Research Opinions in Animal and Veterinary Sciences, 4(7): 353-370.
3. Ghazali S.N., Ahmad A., Quraishia S.F., PanneerchelvamS., Rashid N.H.A. 2016. Molecular characterization of ornamental fish (Poeciliidae) using mitochondrial DNA 12S rRNA and 16 S rRNA genes. Annals of Biological Research, 7(5): 5-11.
4. Graur D., Li W.H., 2000. Molecular Evolution., 2nd. ed. (pp. 1-6): Sinauer Associates. Massachusetts.
5. Holmes D.J., Jasienska G., 2017. Evolutionary Medicine and Life History Theory The Arc of Life. Springer. NewYork. pp. 11-15.
6. Hsieh H.M., Liao S.P., Huang L.H., Kuo Y.C., Lin A., Lee J., Tsai L.C.,2008. Species identification of fragmented turtle shells by cytochrome b gene. Forensic Science Journal,7: 45-47.
7. Kapli P., Botoni D., Ilgaz C., Kumlutas Y., Avcı A., Rastegar-Pouyani N.,Fathinia B., Lymberakis P., Ahmadzadeh F., Poulakakis N., 2013. Molecular phylogeny and historical biogeography of the Anatolian lizard Apathya (Squamata, Lacertidae). Molecular Phylogenetics and Evolution, 66: 992e1001.
8. Kumar S., Rzhetsky A., 1996. Evolutionary relationships of eukaryotic kingdoms. Journal of Molecular Evolution,42(2), 183-193.
9. Ming L., Yi L., Guo F., Siriguleng S., Jirimutu J. 2016. Molecular phylogeny of the Bactrian camel based on mitochondrial Cytochrome b gene sequences. Genetics and Molecular Research,15: 15038983.
10. Owczarzy R., Tataurov A.V., Wu Y., Manthey J.A., McQuisten K.A., Almabrazi H.G., Pedersen K.F., Lin Y., Garretson J., McEntaggart N.O., Sailor C.A., Dawson R.B., Peek A.S., 2008. IDT SciTools: a suite for analysis and design of nucleic acid oligomers. Nucleic Acids Research, 36(suppl. 2): W163−W169.
11. Pei A.Y., Oberdorf W.E., Nossa C.W., Agarwal A., Chokshi P., Gerz E.A., Poles M., 2010. Diversity of 16 S rRNA genes within individual prokaryotic genomes. Applied and Environmental Microbiology, 76(12): 3886-3897.
12. Pereira F., Carneiro J., Amorim A., 2008. Identification of species with DNA-based technology: current progress and challenges. Recent Patents on DNA and Gene Sequences,2(3): 187-200.
13. Raupach M.J., Radulovici A.E., 2015. Looking back on a decade of barcoding crustaceans. Zookeys, 539: 53-81
14. Reed G.H., Kent J.O., Wittwer C.T. 2007. High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomic, 8(6): 597-608
15. Rokas A., Ladoukakis E., Zouros E., 2003. Animal mitochondrial DNA recombination revisited. Trends in Ecology and Evolution, 18(8): 411-417.
16. Sacchi C.T., Whitney A.M., Mayer L.W., Morey R., Steigerwalt A., Boras A., Popovic T., 2002. Sequencing of 16 S rRNA gene: a rapid tool for identification of Bacillus anthracis. Emerging Infectious Diseases,8(10): 1117-1123.
17. Singh A., 2012. Molecular taxonomy: use of modern methods in the identification of a species. International Journal of Life Sciences,2(1): 143-147.
18. Tiwari A., Wadhwa V., 2005. MeltDNA: Tool for prediction of DNA duplex hybridization and melting thermodynamics. Bioinformatics India. 1: 35-43.
19. Tsai L.C., Huang M.T., Hsiao C.T., Lin A. C.Y., Chen S.J., Lee C., Hsieh H.M. 2007. Species identification of animal specimens by cytochrome b gene. Forensic Science Journal, 6(1): 63-65.
20. Větrovský T., Baldrian P. 2013. The variability of the 16 S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One,8(2): e57923.
21. Wittwer C.T., 2009. High resolution DNA melting analysis: advancements and limitations. Human Mutation,30(6): 857-859.
_||_