The Effect of Different Levels of Dietary Manganese on Antioxidant Activity, Liver Enzymes and Liver Histology in Reared Young Beluga (Huso huso)
Subject Areas : Journal of Animal BiologyFatemeh Hemmati 1 , Hossein Khara 2 , Habib Vahabzadeh Roudsari 3 , Rezvanollah Kazemi 4
1 - Department of Fishery, Lahijan Branch, Islamic Azad University, Lahijan, Iran
2 - Department of Fishery, Lahijan Branch, Islamic Azad University, Lahijan, Iran
3 - Department of Fishery, Lahijan Branch, Islamic Azad University, Lahijan, Iran
4 - Agricultural Research, Education and Extension Organization (AREEO), International Sturgeon Research Institute, Rasht, Iran
Keywords: Beluga (Huso huso), dietary manganese, Antioxidant activity, liver enzymes, Liver tissue,
Abstract :
This research aims to determine the effect of different amounts of dietary manganese on antioxidant activity, liver enzymes and, liver tissue of rearing young beluga (Huso huso) from October to December 2022 at the Dr. Beheshti Reproduction and Genetic Stock Restoration Center of Sturgeon in Rasht, Guilan province. For this study, 180 pieces of beluga with an average initial weight of 266 ± 3.05 grams underwent a two-week adaptation period in the breeding environment, in six treatment groups and each treatment with three repetitions, with concentrations of 5 (Mn1), 10 (Mn2), 15 (Mn3), 20 (Mn4) and 25 (Mn5) mg of manganese sulfate monohydrate (MnSO4H2O) per kilogram of food and control treatment (Mn0) without adding manganese sulfate supplement were carried out in two months. At the end of each month, three pieces of fish were selected from each repetition, blood was collected and their livers were sampled for histological studies. The results revealed a significant difference in catalase and glutathione peroxidase levels among the experimental treatments (p<0.05) and their maximum amount was the control treatment fish, while superoxide dismutase levels did not differ significantly (p<0.05). Among the liver enzymes, Alkaline-phosphatase and aspartate-aminotransferase had a significant difference between the control treatment and other experimental treatments (p<0.05), but the alanine-aminotransferase enzyme had no significant difference (p<0.05). Also, different forms of tissue damage were observed in the liver tissue of all treatments, even the control (atrophy, biliary stagnation, Fat degeneration and, cellular necrosis). Based on the results of this research, the levels of 10-15 mg of dietary manganese could improve antioxidant activities, liver enzymes and reduce liver tissue damage in breeding young beluga.
1. Abdelhamid A., Abdel-Khalek A. E., Mehrim A.I., Khalil F.F. 2004. An attempt to alleviate aflatoxicosison On Nile tilapia fish by dietary supplementations with chicken-hatchery by-products (egg shells) and shrimp processing wastes (shrimp shells) ON: 1• Fish Performance and Feed and Nutrients Utilization. Journal of Animal and Poultry Production, 29(11):6157-6173.
2. Allameh S.K., Noaman V., Nahavandi R. 2017. Effects of probiotic bacteria on fish performance. Advanced Techniques in Clinical Microbiology, 1(2):11-25.
3. Antony Jesu Prabhu, P., Schrama, J. W., and Kaushik, S. J. 2016. Mineral requirements of fish: a systematic review. Reviews in Aquaculture, 8(2), 172-219.
4. Asaikkutti A., Bhavan P.S., Vimala K., Karthik M. Cheruparambath P. 2016. Dietary supplementation of green synthesized manganese-oxide nanoparticles and its effect on growth performance, muscle composition and digestive enzyme activities of the giant freshwater prawn, Macrobrachium rosenbergii. Journal of Trace Elements in Medicine and Biology, 35:7-17.
5. Aschner J.L., Aschner M. 2005. Nutritional aspects of manganese homeostasis. Molecular Aspects of Medicine, 26(4): 353-362.
6. Awasthi Y., Ratn A., Prasad R., Kumar M., Trivedi S.P. 2018. An in vivo analysis of Cr6+ induced biochemical, genotoxicological and transcriptional profiling of genes related to oxidative stress, DNA damage and apoptosis in liver of fish, Channa punctatus (Bloch, 1793). Aquatic Toxicology, 200, 158-167.
7. Camargo M. M., Martinez C.B. 2007. Histopathology of gills, kidney and liver of a Neotropical fish caged in an urban stream. Neotropical Ichthyology, 5:327-336.
8. Carlberg I., Mannervik, B. 1975. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. Journal of Biological Chemistry, 250(14): 5475-5480.
9. Chebanov M., Billard R. 2001. The culture of sturgeons in Russia: production of juveniles for stocking and meat for human consumption. Aquatic Living Resources, 14(6):375-381.
10. Dato-Cajegas C.R.S., Yakupitiyage A. 1996. The need for dietary mineral supplementation for Nile tilapia, Oreochromis niloticus, cultured in a semi-intensive system. Aquaculture, 144(1):227-237.
11. Farag A.M., Nimick D.A., Kimball B.A., Church S.E., Harper D.D., Brumbaugh W. G. 2007. Concentrations of metals in water, sediment, biofilm, benthic macroinvertebrates, and fish in the Boulder River watershed, Montana, and the role of colloids in metal uptake. Archives of Environmental Contamination and Toxicology, 52:397-409.
12. Goth L. 1992. Characterization of acatalasemia detected in two Hungarian sisters. Enzymologia Biologica et Clinica, 46(4-5):252-258.
13. Hamlin H.J. 2006. Nitrate toxicity in Siberian sturgeon (Acipenser baeri). Aquaculture, 253(1): 688-693.
14. Hixson S. M., Parris, C.C., Anderson D. M. 2014. Full substitution of fish oil with camelina (Camelina sativa) oil, with partial substitution of fish meal with camelina meal, in diets for farmed Atlantic salmon (Salmo salar) and its effect on tissue lipids and sensory quality. Food Chemistry, 157:51-61.
15. Kazemi R., Pourdehghani M., Yousefi Jourdeh, A., Yarmohammadi M., Nasri Tajan M. 2010. Cardiovascular system physiology of aquatic animals and applied techniques of fish hematology. Published by; Iranian Fisheries Research Organization, Tehran, Iran 194p. [In Persian].
16. Kim J.H., Kang J.C. 2015. The arsenic accumulation and its effect on oxidative stress responses in juvenile rockfish, Sebastes schlegelii, exposed to waterborne arsenic (As3+). Environmental Toxicology and Pharmacology, 39(2):668-676.
17. Liu Y., Wang J.Y., Li B.S., Qiao H.J., Liu X.D., Hao T.T., Wang X.Y. 2018. Dietary manganese requirement of juvenile hybrid grouper, Epinephelus lanceolatus× E. fuscoguttatus. Aquaculture Nutrition, 24(1): 215-223.
18. Liu Z., Barrett E. J. 2002. Human protein metabolism: its measurement and regulation. American Journal of Physiology-Endocrinology and Metabolism, 283(6):E1105-E1112.
19. Lorentzen M., Maage A., Julshamn K. 1996. Manganese supplementation of a practical, fish meal based diet for Atlantic salmon parr. Aquaculture Nutrition, 2(2):121-125.
20. Lu Y., Liang X.P., Jin M., Sun P., Ma H. N., Yuan Y., Zhou, Q. C. 2016. Effects of dietary vitamin E on the growth performance, antioxidant status and innate immune response in juvenile yellow catfish (Pelteobagrus fulvidraco). Aquaculture, 464:609-617.
21. Ma R., Hou, H., Mai K., Bharadwaj A. S., Ji F., Zhang W. 2015. Comparative study on the effects of chelated or inorganic manganese in diets containing tricalcium phosphate and phytate on the growth performance and physiological responses of turbot, Scophthalmus maximus. Aquaculture Nutrition, 21(6):780-787.
22. Mai W.J., Yan J.L., Wang L., Zheng Y., Xin, Y., Wang W.N. 2010. Acute acidic exposure induces p53-mediated oxidative stress and DNA damage in tilapia (Oreochromis niloticus) blood cells. Aquatic Toxicology, 100(3):271-281.
23. Maage A., Lygren B., El-Mowafi A. F. A. 2000. Manganese requirement of Atlantic salmon (Salmo salar) fry. Fisheries Science, 66(1), 1-8.
24. Magnadottir B. 2006. Innate immunity of fish (overview). Fish and Shellfish Immunology, 20(2), 137-151.
25. Mansouri B., Rahmani R., Azadi N.A., Davari B., Johari S.A., Sobhani P. 2015. Effect of waterborne copper oxide nanoparticles and copper ions on guppy (Poecilia reticulata): Bioaccumulation and histopathology. Journal of Advances in Environmental Health Research, 3: 215 - 223.
26. Marklund, S. and Marklund, G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47(3): 469-474.
27. Mohseni M., Pourali H.R., Kazemi R., Bai S.C. 2014. Evaluation of the optimum dietary protein level for the maximum growth of juvenile beluga (Huso huso L. 1758). Aquaculture Research, 45(11):1832-1841.[In persian].
28. Musharraf M., Khan M.A. 2021. Dietary manganese requirement of fingerling Indian major carp, Labeo rohita (Hamilton) estimated by growth, tissue manganese concentration and hepatic manganese-superoxide dismutase activity. Aquaculture, 540: 734-736.
29. Nazari K. 2023. The effect of different levels of organic and inorganic Selenium on the morphology of intestinal vily and histological changes of liver in rainbow trout parr. Journal of Aquaculture Development, 17(2):115-130.
30. Nie J. Q., Don X.H., Tan B.P., Chi S.Y., Yang Q.H., Liu, H.Y., Shuang, Z. 2016. Effects of dietary manganese sources and levels on growth performance, relative manganese bioavailability, antioxidant activities and tissue mineral content of juvenile cobia (Rachycentron canadum L). Aquaculture Research, 47(5):1402-1412.
31. Oliva‐Teles A. 2012. Nutrition and health of aquaculture fish. Journal of Fish Diseases, 35(2):83-108.
32. Pan L., Zhu X., Xi S., Lei W., Han D., Yang Y. 2008. Effects of dietary manganese on growth and tissue manganese concentrations of juvenile gibel carp, Carassius auratus gibelio. Aquaculture Nutrition, 14(5): 459-463.
33. Parma M. J., Loteste A., Campana M., Bacchetta C. 2007. Changes of hematological parameters in Prochilodus lineatus (Pisces, Prochilodontidae) exposed to sublethal concentration of cypermethrin. Journal of Environmental Biology, 28(1):147-149.
34. Roubach, R., Menezes, A., Oh, K. and Dabbadie, L. 2019. Towards guidelines on sustainable aquaculture. FAO Aquaculture Newsletter, (60):55-56.
35. Sharifpour I., Hallajian A., Kazemi R. 2014. Histology Laboratorial Techniques for Aquatics. Firs edition, Iranian Fisheries Research Organization, Tehran, 345p. [In Persian].
36. Sovenyi, J., and Szakolczai, J. 1993. Studies on the toxic and immunosuppressive effects of cadmium on the common carp. Acta Veterinaria Hungarica, 41(3-4): 415-426.
37. Tacon A.G. 1992. Nutritional fish pathology: morphological signs of nutrient deficiency and toxicity in farmed fish . Food and Agriculture Organization. 75p.
38. Tan X. Y., Xie P., Luo Z., Lin, H. Z., Zhao, Y.H., Xi W. Q. 2012. Dietary manganese requirement of juvenile yellow catfish, Pelteobagrus fulvidraco, and effects on whole body mineral composition and hepatic intermediary metabolism. Aquaculture, 326:68-73.
39. Vaglio A., Landriscina C. 1999. Changes in liver enzyme activity in the TeleostSparus auratain response to cadmium intoxication. Ecotoxicology and Environmental Safety, 43(1): 11-116.
40. Wang H.W., Cai D. B., Zhao C. L., Xiao G. H., Wang Z. H., Xu H. M., Yang L. K., Ma L., Ma J. L. 2010. Effects of dietary manganese supplementation on antioxidant enzyme activity in the shrimp (Neocaridina heteropoda). Israeli Journal of Aquaculture-Bamidgeh, 62(2):78-84.
41. Welker T. L., Overturf K., Abernathy J., Barrows, F.T., Gaylord G. 2018. Optimization of dietary manganese for rainbow trout, Oncorhynchus mykiss, fed a plant‐based diet. Journal of the World Aquaculture Society, 49(1):71-82.
42. Ye C. X., Tian L.X., Yang H.J., Liang J.J., Niu J., Liu Y.J. 2009. Growth performance and tissue mineral content of juvenile grouper (Epinephelus coioides) fed diets supplemented with various levels of manganese. Aquaculture Nutrition, 15(6):608-614.
43. Zafar N., Khan, M.A. 2019. Growth, feed utilization, mineralization and antioxidant response of stinging catfish, Heteropneustes fossilis fed diets with different levels of manganese. Aquaculture, 509:120-128.
44. Zhang H., Sun R., Xu W., Zhou H., Zhang, W., Mai K. 2016. Dietary manganese requirement of juvenile large yellow croaker, Larimichthys crocea (Richardson, 1846). Aquaculture, 450:74-79.