A Review on Biological Analysis of of Darwin's Evolutionary Theory on the Origin of Cellular Life on Earth
Subject Areas :
Journal of Animal Biology
Naeimeh Shibaei
1
*
1 - Department of Agriculture, Shabestar Branch, Islamic Azad University, Shabestar, Iran
Received: 2022-09-14
Accepted : 2023-01-08
Published : 2023-08-23
Keywords:
Origin of Life,
Darwin's Evolution,
Cell Biogenesis,
Cell Theory,
Cell Biology,
Abstract :
The origin of cellular life is still unknown. According to Darwin's evolutionary theory that all species of life, due to the process of natural selection, originated from a common ancestor, some have assumed the origin of life to be a random process during which life evolved from non-living materials such as simple organic compounds to has come into existence. The prevailing hypothesis is that the transition from non-living organisms to living organisms was not a single event, but a complex evolutionary process that began after the formation of the Earth after the Big Bang, as a result of the transformation of inorganic molecules into organic molecules. And then with the spontaneous creation of organic molecules with the ability of self-replication, assembly, autocatalysis and then the emergence of cell membrane, nature has been able to choose the best compounds that have the ability to expand on earth and become prokaryotic cells and in the later stages as The ancestors of eukaryotic cells expanded to live on earth. In this research, the different dimensions of the probability of the random emergence of the primary cell are explained and the challenges related to them are examined from different aspects of the sciences of cell biology and genetics.
References:
Alemi, M. 2020. From the Big Bang to Living Cells. In M. Alemi (Ed.), The Amazing Journey of Reason: from DNA to Artificial Intelligence (pp. 11-28). Cham: Springer International Publishing.
Altman, S. 1989. Ribonuclease P: an enzyme with a catalytic RNA subunit. Advanced Enzymology and Related Areas of Moleular Biology, 62:1-36.
Anthea, M., Hopkins, J., Johnson, S., LaHart, D., Warner, M. Q., Wright, J. 1997. Cells Building Blocks of Life. New Jersey: Prentice Hall.
Attwater, J., Wochner, A., Pinheiro, V. B., Coulson , Holliger, P. 2010. Ice as a protocellular medium for RNA replication. Natural Community, 1(1):1-9.
Bada, J. L., Lazcano, A. 2003. Prebiotic soup-revisiting the Miller experiment. Science, 300(5620):745-746.
Ban, E., Kim, A. 2022. Coacervates: recent developments as nanostructure delivery platforms for therapeutic biomolecules. International Journal of Pharmaceutics, 624:122058.
Bartel, D.P., Szostak, J.W. 1993. Isolation of new ribozymes from a large pool of random sequences. Science, 261(5127):1411-1418.
Becker, S., Feldmann, J., Wiedemann, S., Okamura, H., Schneider, C., Iwan, K., Carell, T. (2019. Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides. Science, 366(6461):76-82.
Biswajit, S., Joyce, G.F. 2017. A reverse transcriptase ribozyme. eLife, 6:e31153.
Brown, T. A. 2018. Genomes. New York: Garland Science, 538 pp.
Butlerow, A. 1861. Formation synthétique d’une substance sucrée. Comptes Rendus de l'Académie des Sciences, 53:145-147.
Cech, T.R. 2000. The ribosome is a ribozyme. Science, 289(5481):878-879.
Chen, Y., Qi, F., Gao, F., Cao, H., Xu, D., Salehi-Ashtiani, K., Kapranov, P. 2021. Hovlinc is a recently evolved class of ribozyme found in human lncRNA. Nature chemical biology, 17(5):601-607.
Cojocaru, R., Unrau, P. 2021. Processive RNA polymerization and promoter recognition in an RNA World. Science, 371:1225-1232.
Cornell, C. E., Black, R. A., Xue, M., Litz, H. E., Ramsay, A., Gordon, M., Lee, K.K. 2019. Prebiotic amino acids bind to and stabilize prebiotic fatty acid membranes. Proceedings of the National Academy of Sciences, 116(35): 17239-17244.
Deamer, D. 2017. The role of lipid membranes in life’s origin. Life, 7(1):5.
Decatur, W., Einvik, , Johansen, S., Vogt, V. 1995. Two group I ribozymes with different functions in a nuclear rDNA intron. The EMBO Journal, 14(18):558-4568.
Deng, J., Shi, Y., Peng, X., He, Y., Chen, X., Li, M., Huang, L. 2023. Ribocentre: a database of Nucleic Acids Research, 51(D1):D262-D268.
Ekland, E. H., Bartel, D. P. 1996. RNA-catalysed RNA polymerization using nucleoside triphosphates. Nature, 382(6589):373-376.
Ferris, J. P., Hill, A. R., Liu, R., Orgel, L. E. (1996). Synthesis of long prebiotic oligomers on mineral surfaces. Nature, 381(6577):59-61.
Fiore, M., Strazewski, P. 2016. Prebiotic lipidic amphiphiles and condensing agents on the early Earth. Life, 6(2):17.
Fiore, M. 2018. The synthesis of mono-alkyl phosphates and their derivatives: an overview of their nature, preparation and use, including synthesis under plausible prebiotic conditions. Organic and Biomolecular Chemistry, 16(17):3068-3086.
Fiore, M., Chieffo, C., Lopez, A., Fayolle, D., Ruiz, J., Soulère, L., Buchet, R. 2022. Synthesis of Phospholipids Under Plausible Prebiotic Conditions and Analogies with Phospholipid Biochemistry for Origin of Life Studies. Astrobiology, 22(5):598-627.
Fraccia, T.P., Smith, G.P., Zanchetta, G., Paraboschi, E., Yi, Y., Walba, D. M., Bellini, T. 2015. Abiotic ligation of DNA oligomers templated by their liquid crystal ordering. Nature Communications, 6(1):6424.
Fraccia, T.P., Martin, N. 2021. Non-enzymatic oligonucleotide ligation in photoswitchable coacervate protocells sustains compartment-content coupling. Polymere Science.
Gregory, T. R. 2009. Artificial Selection and Domestication: Modern Lessons from Darwin’s Enduring Analogy. Evolution: Education and Outreach, 2(1):5-27.
Guseva, E., Zuckermann, R.N., Dill, K.A. 2017. Foldamer hypothesis for the growth and sequence differentiation of prebiotic polymers. Proceedings of the National Academy of Sciences, 114.
Hampel, A., Tritz, R. 1989. RNA catalytic properties of the minimum (-) sTRSV sequence. Biochemistry, 28(12):4929-4933.
Han, K., Li, Z.F., Peng, R., Zhu, L.p., Zhou, T., Wang, L.G., Wu, Z.H. 2013. Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu. Scientific Reports, 3(1):1-7.
Hanczyc, M. M., Fujikawa, S. M., Szostak, J.W. 2003. Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science, 302(5645):618-22.
Hargreaves, W.R., Deamer, D.W. 1978. Liposomes from ionic, single-chain amphiphiles. Biochemistry, 17(18):3759-3768.
Hashizume, H., Theng, B. K., Gaast, S. v. d., Fujii, K. 2019. Formation of nucleosides and nucleotides in chemical evolution Evolution, Origin of Life, Concepts and Methods, pp:31-42.
Hud, N.V., Fialho, D.M. 2019. RNA nucleosides built in one prebiotic pot. Science, 366(6461):32-33.
Ishida, S., Terasaka, N., Katoh, T., Suga, H. 2020. An aminoacylation ribozyme evolved from a natural tRNA-sensing T-box riboswitch. Nature Chemical Biology, 16(6):702-709.
Jia, T. Z., Bellini, T., Clark, N., Fraccia, T. P. 2022. A liquid crystal world for the origins of life. Emerging Topics in Life Sciences, 6(6):557-569.
Jin, L., Kamat, N. P., Jena, S., Szostak, J. W. 2018. Fatty acid/phospholipid blended membranes: a potential intermediate state in protocellular evolution. Small, 14(15):1704077.
Johnson A. P., Cleaves, H. J., Dworkin, J. P., Glavin, D. P., Lazcano, A., Bada, J. L. (2008). The Miller volcanic spark discharge experiment. Science, 322(5900):404-404.
Johnson, B.R., Lam, S.K. 2010. Self-organization, Natural Selection, and Evolution: Cellular Hardware and Genetic Software. BioScience, 60(11): 879.
Johnston, W. K., Unrau, P. J., Lawrence, M. S., Glasner, M. E., Bartel, D. P. 2001. RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science, 292(5520):1319-1325.
Jordan, S. F., Rammu, H., Zheludev, I. N., Hartley, A. M., Maréchal, A., Lane, N. 2019. Promotion of protocell self-assembly from mixed amphiphiles at the origin of life. Nature Ecology and Evolution, 3(12):1705-1714.
Kim, H. J., Kim, J. 2019. A Prebiotic Synthesis of Canonical Pyrimidine and Purine Ribonucleotides. Astrobiology, 19(5):669-674.
Kindt, J. T., Szostak, J. W., Wang, A. 2020. Bulk self-assembly of giant, unilamellar vesicles. ACS Nano, 14(11):14627-14634.
Kolev, N. G., Hartland, E. I., Huber, P. W. 2008. A manganese-dependent ribozyme in the 3′-untranslated region of Xenopus Vg1 mRNA. Nucleic Acids Research, 36(17):5530-5539.
Kondepudi, D., Prigogine, I. 1998. Modern Thermodynamics. From heat Engines to Dissipative Structures (2nd ed.). John Wiley and Sons.
Koshland, D.E. 1958. Application of a theory of enzyme specificity to protein synthesis. Proceedings of the National Academy of Sciences, 44(2):98-104.
Kruger, K., Grabowski, P.J., Zaug, A.J., Sands, J., Gottschling, D.E., Cech, T.R. 1982. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell, 31(1):147-157.
Leslie E.O. 2004. Prebiotic chemistry and the origin of the RNA world. Critical Reviews in Biochemistry and Molecular Biology, 39(2):99-123.
Lodish, H., Berk, A., Kaiser, C.A., Krieger, M., Bretscher, A., Ploegh, H., Martin, K.C. 2016. Loose-leaf Version for Molecular Cell Biology: W. H. Freeman, 1280 pp.
Lopez, A., Fiore, M. 2019. Investigating prebiotic protocells for a comprehensive understanding of the origins of life: A prebiotic systems chemistry perspective. Life, 9(2):49.
Lopez, A., Fayolle, D., Fiore, M., Strazewski, P. 2020. Chemical Analysis of Lipid Boundaries after Consecutive Growth and Division of Supported Giant Vesicles. Iscience, 23(11):101677.
Margulis, L., Sagan, D. 1997. Microcosmos: Four billion years of microbial evolution. University of California Press, 304 pp.
Mast, C. B., Schink, S., Gerland, U., Braun, D. 2013. Escalation of polymerization in a thermal gradient. Proceedings of the National Academy of Sciences, 110(20):8030-8035.
Menor‐Salván, C., Marín‐Yaseli, M.R. 2013. A new route for the prebiotic synthesis of nucleobases and hydantoins in water/ice solutions involving the photochemistry of acetylene. Chemistry–A European Journal, 19(20):6488-6497.
Monnard, P.A., Kanavarioti, A., Deamer, D.W . Eutectic phase polymerization of activated ribonucleotide mixtures yields quasi-equimolar incorporation of purine and pyrimidine nucleobases. Journal of the American Chemical Society, 125(45):13734-13740.
Orgel, L.E. 1992. Molecular replication. Nature, 358:203-209.
Ourisson, G., Nakatani, Y. 1994. The terpenoid theory of the origin of cellular life: the evolution of terpenoids to cholesterol. Chemistry and Biology, 1(1):11-23.
Peebles, C. L., Perlman, P., Mecklenburg, K., Petrillo, M., Tabor, J., Jarrell, K., Cheng, H.-L. 1986. A self-splicing RNA excises an intron lariat. Cell, 44(2):213-223.
Peretó, J., Bada, J. L., Lazcano, A. 2009. Charles Darwin and the origin of life. Origins of Life and Evolution of Biospheres, 39: 395-406.
Prody, G. A., Bakos, J. T., Buzayan, J. M., Schneider, I. R., Bruening, G. 1986. Autolytic processing of dimeric plant virus satellite RNA. Science, 231(4745):1577-1580.
Prosdocimi, F., Farias, S., José, M. 2022. Prebiotic chemical refugia: multifaceted scenario for the formation of biomolecules in primitive Earth. Theory in Biosciences, 141:1-9.
Radakovic, A., DasGupta, S., Wright, T. H., Aitken, H.R., Szostak, J.W. 2022. Nonenzymatic assembly of active chimeric ribozymes from aminoacylated RNA oligonucleotides. Proceedings of the National Academy of Sciences, 119(7):e2116840119.
Rajamani, S., Vlassov, A., Benner, S., Coombs, A., Olasagasti, F., Deamer, D. 2008. Lipid-assisted synthesis of RNA-like polymers from mononucleotides. Origins of Life and Evolution of Biospheres, 38(1):57-74.
Ray, S. 2017. Evolutionary computing to examine variation in proteins with evolution nature-inspired computing: concepts, methodologies, tools, and applications (pp. 187-202): IGI Global.
Reece, J. B., Taylor, M. R., Simon, E. J., Dickey, J. L., Hogan. 2021. Campbell Biology (Vol. 4). Boston: Pearson
Roberts, S. J., Liu, Z. 2022. Potentially Prebiotic Synthesis of Aminoacyl-RNA via a Bridging Phosphoramidate-Ester Intermediate. Journal of the American Chemical Society, 144(9):4254-4259.
Roth, A., Weinberg, Z., Chen, A. G., Kim, P. B., Ames, T. D., Breaker, R. R. 2014. A widespread self-cleaving ribozyme class is revealed by bioinformatics. Nature Chemical Biology, 10(1):56-60.
Salehi-Ashtiani, K., Lupták, A., Litovchick, A., Szostak, J.W. 2006. A genomewide search for ribozymes reveals an HDV-like sequence in the human CPEB3 gene. Science, 313(5794):1788-1792.
Sanchez, R., Ferris, J., Orgel, L. 1966. Conditions for purine synthesis: did prebiotic synthesis occur at low temperatures? Science, 153(3731):72-73.
Sanchez, R., Ferris, J., Orgel, L. 1966. Cyanoacetylene in prebiotic synthesis. Science, 154(3750):784-785.
Saville, B.J., Collins, R.A. 1990. A site-specific self-cleavage reaction performed by a novel RNA in Neurospora mitochondria. Cell, 61(4):685-696.
Sharmeen, L., Kuo, M., Dinter-Gottlieb, G., Taylor, J. 1988. Antigenomic RNA of human hepatitis delta virus can undergo self-cleavage. Journal of Virology, 62(8):2674-2679.
Smith, G. P., Fraccia, T. P., Todisco, M., Zanchetta, G., Zhu, C., Hayden, E., Clark, N. A. 2018. Backbone-free duplex-stacked monomer nucleic acids exhibiting Watson–Crick selectivity. Proceedings of the National Academy of Sciences, 115(33):E7658-E7664.
Šponer, J., Jurečka, P., Marchan, I., Luque, F. J., Orozco, M., Hobza, P. 2006. Nature of Base Stacking: Reference Quantum-Chemical Stacking Energies in Ten Unique B-DNA Base-Pair Steps. Chemistry-A European Journal, 12(10):2854-2865.
Šponer, J.E., Šponer, J., Výravský, J., Šedo, O., Zdráhal, Z., Costanzo, G., Matyášek, R. 2021. Nonenzymatic, Template‐Free Polymerization of 3’, 5’Cyclic Guanosine Monophosphate on Mineral Surfaces. Chem SystemsChem, 3(6):e2100017.
Teixeira, A., Tahiri-Alaoui, A., West, S., Thomas, B., Ramadass, A., Martianov, I., Akoulitchev, A. 2004. Autocatalytic RNA cleavage in the human β-globin pre-mRNA promotes transcription termination. Nature, 432(7016):526-530.
Todisco, M., Fraccia, T. P., Smith, G. P., Corno, A., Bethge, L., Klussmann, S., Zanchetta, G. 2018. Nonenzymatic polymerization into long linear RNA templated by liquid crystal self-assembly. ACS Nano, 12(10):9750-9762.
Vicens, Q., Cech, T. R. 2009. A natural ribozyme with 3′, 5′ RNA ligase activity. Nature Chemical Biology, 5(2):97-99.
Weinberg, Z., Kim, P.B., Chen, T.H., Li, S., Harris, K.A., Lünse, C.E., Breaker, R.R. 2015. New classes of self-cleaving ribozymes revealed by comparative genomics analysis. Nature Chemical Biology, 11(8):606-610.
Winkler, W.C., Nahvi, A., Roth, A., Collins, J.A., Breaker, R.R. 2004. Control of gene expression by a natural metabolite-responsive ribozyme. Nature, 428(6980):281-286.
_||_