Examining the Effect of Artificial Intelligence on Networked Governance in Service Organizations: A Case Study of the Iranian Gas Distribution Industry
Subject Areas : Application of artificial intelligence and information technologyHadi Mehrabi Sharafabadi 1 * , Sedigheh Tootian Esfahani 2 , karamollah daneshfard 3 , Mohammad ali Movafaghpour 4
1 - Ph.D. student in Public Administration, Islamic Azad University, Science and Research Branch, Tehran
2 - Faculty of management, Islamic Azad university, Tehran West Branch. Tehran. Iran
3 - Professor, Faculty of Management and Accounting, University of Research Sciences, Tehran, Iran
4 - Faculty of Mechanical Engineering, Dezful Jundishapur University of Technology
Keywords: Networked governance, artificial intelligence, Iranian gas distribution industry, Delphi.,
Abstract :
Introduction:
The development of technologies has made networked governance an inevitable approach in public and service organizations. Artificial intelligence will affect many components of governance, and in this paper, we have identified and examined these components in the Iranian gas distribution service organizations.
Methodology:
In this research, for data collection, the Delphi method was used in the first stage and the survey method was used in the second stage to collect the required data and information. Library resources and questionnaires were also used to collect exploratory information. Then, using appropriate questionnaires for each section, the required variables were collected. Considering the opinions of 15 experts and measuring Kendall's coefficient of concordance, their agreement was confirmed and analyzed in the Iranian gas distribution industry.
Results and Discussion:
The results showed that the most important components affected by artificial intelligence are: responding to subscribers, decision-making by managers, operational planning for maintenance and repairs, financial management, and analytical and statistical reporting.
Conclusion:
Artificial intelligence can play an important role in improving efficiency, reducing costs and increasing customer satisfaction in the Iranian gas distribution industry. Artificial intelligence systems, by connecting to various portals and processing information, can produce appropriate responses for gas subscribers and have a direct impact on managerial decision-making in Artificial intelligence can create accurate preventive plans for facilities by analyzing data and speed up repair processes by analyzing failures. Data analysis and preparation of statistical reports that can analyze trends in gas consumption and customer behavior will be implemented by artificial intelligence.various areas and on the configuration of the gas facility maintenance system.
1. خیاط بصیری، شقایق و موحدی سبحانی، فرزاد و سجادی، سید جعفر، (1401)،توسعه توانمندسازهای حکمرانی با هدف توزیع گاز پایدار: موردکاوی از شرکت گاز استان https://www.doi.org/10.22034/jgeoq.2022.340284.3683
2. سیاستهای کلی نظام -ابلاغی از سوی مقام معظم رهبری- (1379)- مرکز پژوهشهای مجلس -https://rc.majlis.ir/fa/law/show/99709
3. فریدنیا، میلاد و استخریان حقیقی، امیررضا،1402،تاثیرات هوش مصنوعی بر بازاریابی دیجیتال و بررسی اثرات آن بر روی تولید محتوای هوشمند و سرعت پاسخگویی به نیازهای مشتری، نخستین کنفرانس ملی اینترنت اشیا، اهواز،https://civilica.com/doc/1905141
4. مهرابی شرف آبادی، هادی (1401). ابرتغییرات مدیریت دولتی. انتشارات فرهنگ و هنر صادق، چاپ اول، تهران. فصل چهارم، فناوری بلاک چین و مدیریت دولتی. ص 61 الی 115. https://ketab.ir/book/c7658ac3-9cd5-4106-ad52-652375b4cf9f
5. مهرابی شرف آبادی، هادی و ولی خانی، ماشاالله،(1402)، شناسایی موانع ارتقاء بهره وری و رفع آن ها و ارائه مدل محاسبه بهره وری کل در شرکت های دولتی توزیع گاز- http://iieshrm.ir/article-1-1482-fa.html
6. Alhosani, Khalifa & Alhashmi, Saadat. (2024). Opportunities, challenges, and benefits of AI innovation in government services: a review. Discover Artificial Intelligence. 4. 10.1007/s44163-024-00111-w.
7. Habibi, Arash., Sarafrazi, Azam., Izadyar, Sedigheh (2014), Delphi Technique Theoretical Framework in Qualitative Research1, The International Journal Of Engineering And Science, vol 3. No.4, pp.08-13.
8. Kapucu, N., & Hu, Q. (2020). Network governance: Concepts, theories, and applications. New York: Routledge. https://doi.org/10.4324/9781351056540
9. Knieps, G. (2023). The Governance of Big Data and Artificial Intelligence in Network Industries. Competition and Regulation in Network Industries, 17835917231185877. https://doi.org/10.1177/17835917231185877
10. Pomares, J., & Abdala, M. (2020). The Future of AI Governance: The G20's Role and the Challenge of Moving Beyond Principles. Global Solutions Journal (5).
11. Provan, K. G., & Kenis, P. (2008). Modes of network governance: Structure, management, and effectiveness. Journal of public administration research and theory, 18(2), 229-252. https://doi.org/10.1093/jopart/mum015
12. Reis, J., Santo, P. E., & Melão, N. (2019, June). Impacts of artificial intelligence on public administration: A systematic literature review. In 2019 14th Iberian conference on information systems and technologies (CISTI) (pp. 1-7). IEEE.
13. Taeihagh, A. (2021). Governance of artificial intelligence. Policy and society, 40(2), 137-157. https://doi.org/10.1080/14494035.2021.1928377
14. Veale, M., & Brass, I. (2019). Administration by algorithm? Public management meets public sector machine learning. Public management meets public sector machine learning.
15. Yu, B., & Kumbier, K. (2018). Artificial intelligence and statistics. Frontiers of Information Technology & Electronic Engineering, 19(1), 6-9.