Effect of drought and salt stresses on yield, yield components, and ion content, of hull-less barley (Hordeum sativum L.)*
Subject Areas : Agroecology JournalAli Reza Bagheri 1 , Hossein Heidari Sharif Abad 2
1 - Ph.D. Student of Islamic Azad University of Tehran, Science and Research Branch, and Scientific Board of Islamic Azad University, Eqlid Branch
2 - Scientific Board Seed and Plant Certification and Registration Institute
Keywords:
Abstract :
Drought cause yield loses in cereals in most regions Iran. Barley and hull-less barley are the most suitable cereal crops for such situation. Four hull-less barley genotypes (UH3, U46M, EHM81-12 and CM67) were grown in research station of Eqlid azad university in two different experiments for drought stress study in, 2005- 2006 .In drought based study, four irrigation methods including irrigating after the reaching soil water potential to -0.5, bar (control), 1.5 bar, -3 and -5 bar were used.The experimental design was split plot based on randomized complete block design with three replications in which the drought treatments were arranged in main plots and genotypes in subplots.The determined parameters were yield, it's components and ion content in shoots.The results revealed that the number of spike and grain per plot were reduced significantly by stress and grain weight was less sensitive to that.The biological and grain yields were decreased by stress. Among the genotypes, UH3 and CM67 had the lowest and highest grain and biological yield, respectively. The biological yield differences was related to low plant height, leaves and area tillers and the grain yield differences were caused by reduction in ear per plant and grain per ear.The grain protein content was influenced by drought stress. Drought stress decreased ion content except Na and Cl. The LAR value was first decreased by stress treatments but showed an increase at high stress levels. In general, UH3 genotype showed lowest yield and yield components, stress tolerance index, photosynthesis, growth and ion content and CM67 was vise versa.
1- الیاس آذر، خ. 1375. خاک شناسی عمومی و خصوصی. انتشارات جهاد دانشگاهی ارومیه. 396 صفحه.
2- Ali, A., T. C. Tucker, T. L. Thompson, and M. Salim. 2001. Effect of salinity and mixed ammonium and nitrate nutrition on the growth and nitrogen utilization of barley. J. Agron. and Crop Sci. 186:233-228.
3- Alpaslan, M. A. Cunes, and S. Taban. 1999. Salinity resistance of certain rice ( Oryza sativa L.) cultivars. Turkish J. of Botany. 23:499-506.
4- Amtmann. A., and D. Sanders. 1999. Mechanisms of Na- uptake by plant cell. Adv. Bot. Res. 29: 75-112.
5- Asana, R. O., and R. F. Williams. 1965. The effect of temperature stress on grain development in wheat. Aust. J. Agric. Sci. 16:1-13.
6- Asch, D. M., K. Dorffling, and K.Miezan. 2000. Leaf K/Na ratio predicts salinity induced yield loss in irrigated rice. Euphytica. 113: 109-118.
7- Ashraf, M., and A. Waheed. 1993. Screening of local exotic accessions of lentil (Lens culinaris Medic.) for salt tolerance at two growth stages.
8- Basu, M. S., and P.C. Nautiyal. 2004. Improving water use efficiency and drought tolerance in groundnut by trait based breeding programs in India. Indian farming. 54:24-27.
9- Bremner, J. M., and C. S. Mulvaney. 1982. Nitrogen – total. In: A. L. Page., R.H. Miller, and O. R. Keeney (eds): Methods of Soil analysis, Part 2. Ned. Edn. Agron. Monogr.9. pp 595 – 624. ASA and SSSA, Madison.
10- Campbell, C. A., F. Selles, R. P. Zentner, B. G. McConkey, R. C. Mckenzie, and S. A. Drandt. 1997. Factors influencing grain N Concentration of hard red spring wheat in the semiarid prairie. Can. J. Plant Sci. 77:53-61.
11- Clarke, J. M., C. A. Campbell, H. W. Cutforth, R. M. Depauw, and G. E. Winkleman. 1990. Nitrogen and phosphorus uptake, translocation and utilization efficiency of wheat in relation to environment and cultivar yield and protein levels. Can. J. Plant Sci. 70:965-977.
12- Cramer, G. R., E. Epstein, and A. Lauchli. 1991. Effect of sodium, potassium and calcium on salt – stressed barley. II. Element analysis. Physiol. Planta. 81:187-292.
13- Cramer, G. R., G. J. Alberico, and C. Schmidt. 1994. Salt tolerance is not associated with the sodium accumulation of two maize hybrids. Aust. J. Plant Physiol. 21: 675-692.
14- Cuin, T. A., A. J. Miller, and R. A. Leigh. 2003. Potassium activities in cell compartments of salt -grown barley leaves. J. Exp. Bot. 54: 657-661.
15- Demiral, M. A., M. Aydin, and A. Yorulmaz. 2005. Effect of salinity on growth, chemical composition and antioxidative enzyme activity of two malting barley (Hordeum vulgare L.) cultivars. Turk. J. Biol. 29:117-123.
16-El-Sayed, A. A. 2002. Improvement of food hull - less barley in Egypt. Paper presented in the food earley workshop organization by ICARDA and FAO, 14-17 January 2002. Hammamet, D. Tunisia (in press).
17- Eugene, V. M., M. L. Scott, E. Leland, and M. G. Catherine. 1994. Tiller development in salt-stressed wheat. Crop Sci. 34: 1594-1603.
18- Evans, L. T., L. F. Wardlaw, and R. A. Fischer.1975. The pattern of grain set within ears of wheat. Aust. J. Biol. Sci. 25:1-8.
19- Heuer, B., and Z. Plaut. 1989. Photosynthesis and osmotic adjustment of two sugar beet cultivars grown under saline conditions. J. Exp. Bot. 40:437-440.
20- Holtekjolen, A. K, C. Kinits, and S. H. Knutsent. 2006. Flavonal and bound phenolic acid content in different barley varieties J. Agric. Food Chem. 54:2253-2260.
21- Ibrahim, A. H. 1999. Control of growth of sorghum plants grown under stress conditions.Ph.D Thesis Fac. Sci. , Mansura Univ. Egypt.
22- Islam, T. M., R. H. Sedgley. 1981. Evidence for a uniculm effect in spring wheat (Triricwn aestitivum L.) in a mediterranean environment. Euphytica. 30: 277-282.
23- Jones, H. G. 1992. Plants and Microclimate. A Quantities Approach to Environmental Plant Physiology, 2nd edn. Cambridge Univ. Press, Cambridge.
24-Kirby, E. M. 1988. Analysis of leaf, stem and ear growth in wheat from terminal spikelet stage to anthesis. Field Crop Res. 18: 127-140.
25- Leidi, F. O., J. F. Saiz. 1997. Is salinity tolerance related to Na accumulation in upland cotton (Gossympium hirsutum L.) seedlings. J. Plant and Soil. 190: 67-75.
26- Ludlow, M. M., F. J. Santamaria, and S. Fukai. 1990. Contribution of osmotic adjustment to grain yield of Sorghum biocolor L. Moench under water limited conditions. I. Water stress after anthesis. Aust. J. Agric. Res. 41:67-78.
27- Mass, E. V., and J. A. Poss. 1989. Salt sensitivity of cowpea at various growth stages. Irri. Sci. 10: 313-320.
28- Munns. R. 2003. Physiological processes limiting plant growth in saline soil: some dogmas and hypotheses. Plant Cell Environ. 16:15-24.
29- Munns, R., R.A. Hare., R. A. James, and G. J. Rebetzke,. 2000. Genetic variation for improving the salt tolerance of durum wheat. Aust. J. Agric. Res. 51: 69-74.
30- Nicolas, M. E., R. Munns, A. B. Samarakoon, and R.M. Gifford. 1994. Elevated CO2 improves the growth of wheat under salinity. Aust. J. Plant Physiol. 20: 349-360.
31- Rashid, A., R. H. Qureshi, P. A. Hollington, and R. G. Cogn Jones. 1999. Comparative responses of wheat (Triticum aestivum L.) cultivars to salinity at the seedling stage, J. Agron and crop Sci. 182:199-207.
32- Regnel, Z. 1992. The role of calcium in salt toxicity. Plant Cell Environ. 15: 625-632.
33- Savin, R., P. J. Stone , and M. E. Nicolas. 1996. Responses of grain growth and malting quality of barley to short period of high temperature in field studies using portable chamber. 47:465-477.
34- Sheldarke, A. R., and N. P. Saxena, 1979. Growth and development of chickpeas under progressive moisture stress. Pages 63-483 in stress physiology of crop plants. (Massell, H., and R. C. Staples) New York, USA. Willey.
35- Schelling, K., K. Born, C. Weissteiner, and W. Kuhbauch. 2003. Relationships between yield and quality parameters of malting barley (Hordeum vulgare L.) and phenological and meteorological data. J. Agron. and Crop Sci.189:113-122.
36- Sieling, K., O. Christen, H. Richter–Harder, and H. Hanus. 1994. Effects of temporary water stress after anthesis on grain yield and yield components in different tiller categories of two spring wheat varieties. J. Agron. and crop Sci. 173:32-40.
37- Taize, L., and E. Zeiger. 2006. Plant physiology. Sinauer associated Inc.4th Edn. p690.
38- Wrigley, C.W. 1994. Developing better strategies to improve grain quality for wheat. Anst. J. Agric. Res. 52: 60-70.
39- Zadoks, J, C. 1983. An integrated disease and pest – managment scheme, EMPIRE, for Wheat. CIBA Foundation Symposium. 97:116-129.
40- Zeng, L., and M. C. Shannon. 2000. Effects of salinity on grain yield and yield components of rice at different seedling densities. Agron. J. 192: 418-423.
41- Zhu, G. Y., J. M. Kinett, and S. Lutts. 2001. Characterizations of rice (Oryza sativa L.) F3
_||_