Simulation of Different Wood Pyrolysis Considering Evaluation of Air Pollution Impact
Subject Areas : The Application of Chemistry in Environment
Keywords: Renewable energies, simulation, Pollution control, Keywords: Biomass, Pyrolysis process,
Abstract :
Abstract Pyrolysis process is one the thermo-chemical methods in which the biomass is decomposed in the absence of oxygen to produce bio-oil, bio-char and syn-gas. In recent years, due to the reduction of resources and pollution caused by fossil fuels, the use of new and renewable energies has become a special place among countries. Hence, research has been carried out to implement this process at various scales. But it is certainly not feasible to study different operational conditions with different feeds for this process on an industrial scale; therefore, in this study pyrolysis simulation was performed using Aspen Plus software. In simulation, at first, the amount of moisture in the feed used is reduced to a certain amount. In the next step, the biomass decomposes into its constructive elements. In the final step, based on the Gibbs free energy minimization approach, pyrolysis reactions are modeled. The main objective of this study is to investigate the pyrolysis process in terms of the production of and environmental pollutants, along with the rate of production for all feed samples used. In the simulation, three wooden samples have been used.
منابع
[1] Zhang, O.; Chang, J.; Wang, T.; Xu, Y., 2007, Review of biomass pyrolysis oil properties and upgrading research. Energy Convers. Manag, 48, 87–92.
[2] Lindman, E. K. and Hagerstedt, L. E., 1999, Pyrolysis oil as a clean city fuel. In: Power production from biomass Gasification and pyrolysis, R&D&D for industry. Eds; Sipila, K., Korhonen, M. VTT Symposium, 192.
[3] Berndes, G.; Hoogwijk, M.; Broek, R.V., 2003, The contribution of biomass in the future global energy supply: A review of 17 studies. Biomass Bioenergy, 25, 1–28.
[4] Gaijing, Z.; Weiding, L., 2010, A key review on energy analysis and assessment of biomass resources for a sustainable future. Energy Policy, 38, 2948–2955.
[5] McKeough, P.; Nissila, M.; Solantausta, Y.; Beckman, D. and Ostman, A., 1985, Techno-economic assessment of direct biomass liquefaction processes. VTT Technical Research Centre of Finland, report no. 337. ISBN: 951-38-2215-X.
[6] Scott, D.S; Piskorz, J. and Radlein, D., 1985, Liquid products from the continuous flash pyrolysis of biomass. Ing. Eng. Chem., Process Des. Dev., 24, 581 – 588.
[7] Oasmaa, A.; Kuoppala, E. and Solantausta, Y., 2003, Fast pyrolysis of forestry residue. 2. Physiochemical Composition of product liquid. Energy & Fuels, 17, 433 – 443.
[8] Sorsa, R. Soimakallio, S., 2013, Does bio-oil derived from logging residues in Finland meet the European Union greenhouse gas performance criteria Energy Policy, 53, 257 – 266.
[9] Dieterich M, Van de Beld B, V.Bridgwater A, C.Eliott D, Oasmaa A, Preto F., 2013, State-of-the-art of fast pyrolysis in IEA bioenergy member countries. Renewable and Sustainable Energy Reviews, 20, 619-641.
[10] Czernik S, V. Bridgwater A., 2003, Overview of Applications of Biomass Fast Pyrolysis Oil. Energy and Fuels, 18, 590-598.
[11] Bridgewater, A. V.; Peacocoke, G. V. C., 1999, Fast Pyrolysis Processes for Biomass. Sustainable and Renewable Energy Reviews, 4(1), 1-73.
[12] Ringer, M.; Putsche, V. and Scahill, J., 2006, Large-scale pyrolysis oil production: A technology assessment and economic analysis. NREL Technical report TP-510-37779.
[13] Jones, S.B.; Valkenburg, C.; Walton, C.W.; Elliott, D.C.; Holladay, J.E.; Stevens, D.J.; Kinchin, C. and Czernik, S., 2009, Production of gasoline and diesel from biomass via fast pyrolysis, hydrotreating and hydrocracking: A design case. Pacific Northwest national laboratory/U.S. Department of Energy.
[14] Wright, M.M.; Satrio, J.A.; Brown, R.C.; Daugaard, D.E. and Hsu, D.D., 2010, Techno-economic analysis of biomass fast pyrolysis to transportation fuels. NREL Technical report NREL/TP-6A20-46586.
[15] Kabir, M.J.; Rasul, M.G.; Ashwath, N.; Chowdhury, A.A., 2012, Environmental impacts of green wastes to energy conversion through pyrolysis process: An overview. In Proceedings of the 5th BSME International Conference on Thermal Engineering, Dhaka, Bangladesh, 21–23.
[16] Aspen Plus 10.2 user manuals, Cambridge, MA, February 2000.
[17] Atnaw S.M., Sulaiman S.A., Yusup S. A., 2011, simulation study of downdraft gasification of oil-palm fronds using ASPEN PLUS, Journal of Applied Sciences, 11, 1913-1920.
[18] Garcia-Perez M., Wang X.S., Shen J., Rhodes M.J., Tian F.J., Lee W.J., Wu H., Li C. Z., 2008, Fast pyrolysis of oil mallee woody biomass: Effect of temperature on the yield and quality of pyrolysis products. Industrial & Engineering Chemistry Research, 47, 1846-1854.
[19] Garcia-Perez M., Chaala A., Pakdel H., Kretschmer D., 2007, Roy C. Characterization of bio-oils in chemical families. Biomass & Bioenergy, 31, 222-242.
[20] Garcia-Perez M., Wang S., Shen J., Rhodes M., Lee W.J., Li C. Z., 2008, Effects of temperature on the formation of lignin-derived oligomers during the fast pyrolysis of mallee woody biomass. Energy & Fuels, 22, 2022-2032.
[21] MD Mahmudul H, Xiao S. W., Daniel M, Richard G, Chunlong Y, Xun H, Sri K, Mortaza G, Hongwei W, Bin L, Lei Z, Chun-Zhu L., 2017, Grinding pyrolysis of Mallee wood: Effects of pyrolysis conditions on the yields of bio-oil and biochar. Fuel Processing Technology, 167, 215–220.
_||_