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Figure (7) shows neural network predictions together
with real outputs. It is seen that neural network has been
trained as well.

The error between neural network predictions and real
outputs is presented in figure (8).
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Fig. (7): Neural network predictions together with real outputs.
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Fig. (8): Error between neural network predictions and real
outputs.

3.4 Model validation

When a network has been trained, the next step is to
evaluate it. To do this we should force another input to
the model and check the predictions of neural network.
To validate the model, we used the remaining 10150
samples of inputs and outputs that we did not use for
training. Figure (9) shows the predictions of neural
network together with real outputs. As it is seen the
predictions of network follows the real outputs as well.
The error between neural network predictions and real
outputs in validation phase is presented in figure (10).
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Fig. (9): Neural network predictions together with real outputs
in validation phase.
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Fig. (10): Error between neural network predictions and real
outputs in validation phase.

4. Conclusions

The purpose of this paper was to obtain a simple and
reliable model for distillation column. We used black-box
identification to determine the model. ARX model
structure together with artificial feed forward neural
networks was used to estimate the dynamics of system.
Regarding the use of two layer feed forward neural
networks we can declare that the obtained model is
simple. The results in training phase and validation phase
shows that predictions of neural network is very close to
real outputs and the error is negligible. It ensures us that
the obtained model is reliable.

As a future line of work we can study the possibility of
combining empirical model that we obtained with
dynamic model of distillation column.

Appendix
1- Auto Regressive with exogenous input
2- Neural network based system identification
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Fig. (3): Outputs of dynamic system.

3.2 Selecting model structure

After the data set has been acquired, the next step is to
select a model structure. Unfortunately, this issue is much
more difficult in the nonlinear case than in the linear case.
Not only is it necessary to choose a set of regressors but
also a network architecture is required. The approach
used here is described in [7]. The idea is to select the
regressors based on inspiration from linear system
identification and then determine the best possible
network architecture with the given regressors as inputs.
The ARX model structure is selected because this model
structure does not use predictions of model as its
regressors. It means that our neural network is feed
forward and we will not have the problems of high
complexity and high computational costs of recursive
networks.

The regressor vector is:

o) =[y, (t=1),y,(t=2),u, (t=1),y, (t-D),

y,(t=2),u,(t=D]" (14
Figure (4) shows the architecture of this model. As it is
seen the neural network is used as the estimator.
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Fig. (4): Structure of neural ARX model.

3.3 Estimating model parameters by neural networks
A feed forward neural network with two layers is used to
estimate model parameters. The number of neurons in
each layer and the activation function of each neuron
should be determined. The output layer has two neurons
with linear transfer function. The number of neurons in
the hidden layer is determined based on the trials .The
variation of error with number of hidden neurons is
shown in Figure (5).
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Fig. (5): Variation of error with hidden neurons.

The lowest error corresponds to 6 neurons in the hidden
layer. Hence a two layer network with 6 neurons in the
hidden layer and 2 neurons in the output layer is selected.
Hyperbolic tangent activation function is used in hidden
layer. The ANN architecture used is shown in Figure (6).

(k1)
¥(k-2)

Ul (k1)

¥2(k-1)

¥2(k-2)

w21y =y
Fig. (6): Neural networks structure.

In order to determine neural network parameters and
training the network we have used NNSYSID? [8]
toolbox with MATLAB. 10150 samples of inputs and
outputs are used to train the network and the remaining
samples are kept to validate the model. The Levenburg-
Marquardt algorithm was used to train the network. The
parameters of training algorithm are presented in table 2.

Table (2): Parameters of training method

Step size 1x10™4
Momentum 1
Maximum iterations 500
Stop if criterion is below this 0
value.
Stop if change in criterion is 7
below this value. 1x10
Stop if largest element in 4
gradient is below this value. 1x10
Stop if largest parameter 3
change is below this value. 110
Weight decay 1x107°
Forgetting factor 9.95%107!
Min. eigenvalue of P matrix 10
Max. eigenvalue of P matrix 1x1073
Initial Levenberg-Marquardt |
parameter.
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o is relative volatility between light and heavy
component.
From the assumption of constant molar flows and no
vapour dynamics, one obtains the following expression
for the vapour flows
V. =V.

i i-1
5)
The liquid flows depend on the liquid holdup on the stage
above and the vapour flow as follows

0+ MiM% 0
Li =L .+ 5 + (Vi—l_v i—l) (6)
Where LO;[kmol /min] and MO, [kmol / min] are the
nominal values for the liquid flow and holdup on stage i
and VOi is the nominal boil up flow. T is time

constant for liquid flow dynamics on each stage [min]. If
the vapour flow into the stage effects the holdup then the
parameter A is different from zero. For the column under
investigation A =0 . The above equations apply at all
stages except in the top (condenser), feed stage and
bottom (reboiler).
1. For the feed stage, i= N (it is assumed that the feed
is mixed directly into the liquid at this stage)
dMi
T T e
d(MiXi)

i herNartVisria

1~V +F @)
- Lixi - Viyi +Fz. (8)

2. For the total condenser,

i=N, My, =Mp,Ly =L;) ©)]
dM.

—L=Vv_-L,-D 10
a7 {10
dM. x.

IMX) _y  _Lx, -Dx (11)

dt

3. for the reboiler,

i=1(M, =M, V,=V, =V) (12)
dM;x,)

TzLHIXiH_viyi_Bixi 13)

As aresult, we obtain a nonlinear model of the distillation
column of 82™ order. There are two states per tray, one
representing the liquid composition and the other
representing the liquid holdup. We need an overall model
that describes the effect of the inputs (flows) on the
outputs (product compositions). We make use of the so
called LV-configuration of the distillation column in
which L and V are inputs and Y-D and X-B are outputs.
In order to find a linear model of the distillation column it
is necessary to have a steady-state operating point around
which the column dynamics is to be linearized.

The nonlinear model is linearized at the operating point
given in Table 1 (the values of F, L, V,D,B, y,, x, and

z; ). These steady-state values correspond to an initial

state where all liquid compositions are equal to 0.5 and
the tray holdups are also equal to 0.5 [kmol].

(£9\
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Table (1): Column data

N 40 B 0.5

Niot 41 L |2706
Ng 21 V| 3206
F 1 yo | 0.9
zp 0.5 x; | 0.01
dr 1 M. | o5
D 0.5 T, | 0.063

The steady-state vector is obtained for r = 5000 min by
numerical integration of the nonlinear model equations of
the LV -configuration.

3. Modeling by neural networks

Modeling distillation columns by means of neural
networks is reported in literature [6]. The network that
they used was recursive. The recursive networks are
proper for modeling purpose, but such models have the
problems of high complexity and high computational cost.
Our attempt is to find a model by using feed forward
neural networks which will result in a simple model with
less parameters and faster training time. Modeling of
distillation column is done in four steps as follows.

3.1 Generation of input-output data

Having a proper data set is essential in each empirical
modeling problem. In this work we generated such data
set by forcing an input to dynamic model of distillation
column and then obtaining the response of model to it.
The type of input that we use is important because it
should be an input that can excite all process dynamics.
To achieve this goal a random signal was used as input of
the system. Figure (2) shows the two inputs that we
applied to dynamic model. Then the response of dynamic
model to the inputs was obtained. Figure (3) shows two
outputs of the system. Finally a data set of inputs and
outputs with 20300 samples was obtained.

First input(L)
T T T

w10
secand input(V)

10

Fig. (2): Input sequences
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This is because of two reasons: firstly, it has been shown
that these networks are universal non-linear function
approximators [3, 4], and secondly, their application does
not require any knowledge about the structure of the
system to be modeled. Moreover, the NNs can learn
online, based on local information, can treat easily multi
input multi output (MIMO) systems and their
performance degrades gracefully due to the parallel,
distributed processing structure and high degree of
connectivity among the units. All these remarkable
biologically inspired properties made the NNs successful
alternative for dynamic modeling and estimation.

The purpose of this study is to obtain a powerful model
of reference allowing to reproduce the dynamics of a
complex process as a distillation column. This reliable
model enables to reproduce the process dynamics under
different operating conditions. The present study focuses
on the development, and implementation of an ARX'
neural model for the forecasting of the distillation column
dynamics. A random input was forced to dynamic model
and the response of model to the input was obtained in
order to generate the data set that was needed for
identification. Such data were used both to define and to
validate the model. The performance of this neural model
was then evaluated using the performance criteria.
Results show that the ARX neural model is representative
for the dynamic behavior of this nonlinear process.

This paper is organized as follows. Section 2 describes
the distillation column and its dynamic model. Section 3
shows modeling of distillation column by means of
neural networks. The validation of the model is also
evaluated in section 3. Section 4 summarizes the
conclusions and future lines of work.

2. Dynamic model of the distillation column
Distillation is an important process in the separation and
purification of chemicals. The process exploits the
difference at boiling points of multicomponent liquids.
The distillation process is highly nonlinear and the
corresponding linearized models are often ill-conditioned
around the operating point. The dynamic model of
distillation column is reported in different works in
literature. One of the most important works has done by
Sigurd Skogestad and Manfred Morari [5]. The dynamic
model that we have used directly comes from that work.
A typical two-product distillation column is shown in
Figure (1). The objective of the distillation column is to
split the feed F, which is a mixture of a light and a heavy
component with composition z, , into a distillate product

D with composition y,,, which contains most of the light
component, and a bottom product B with compositionz,, ,

which contains most of the heavy component. For this
aim, the column contains a series of trays that are located
along its height. The liquid in the columns flows through
the trays from top to bottom, while the vapour in the
column rises from bottom to top. The constant contact
between the vapour and liquid leads to increasing
concentration of the more-volatile component in the
vapour, while simultaneously increasing concentration of
the less volatile component in the liquid. The operation of
the column requires that some of the bottom product is

WA bl = 23 0)lod = pow Jlo = (5 Curio )3 Sialign sleds,

reboiled at a rate V to ensure the continuity of the vapour
flow and some of the distillate is refluxed to the top tray
at a rate L to ensure the continuity of the liquid flow. The
notations used in the derivation of the column model are
summarized in Table 11.1 and the column data are given
in Table 11.2. The index i denotes the stages numbered

from the bottom (i = 1) to the top (i:Ntot) of the

column. Index B denotes the bottom product and D the
distillate product. A particular high-purity distillation
column with 40 stages (39 trays and a reboiler) plus a
total condenser is considered.

Overhead
vapour

b Condensor
Vr L

=3
Condensor

5 :
i ol

Ay
Reflux
N Distillate
by L D, yp
.
FEL’(] :
Ezr
Fe
P
’i— Boilup
Reboiler

holdup v

Reboiler

Bortom product

= B, xp
Fig. (1): The distillation column system

The nonlinear model equations are:
1. Total material balance on stage i

dM .
-V, Q)
1 i

T R R
Where Mi is liquid holdup on stage i [kmol], Li is liquid

flow from stage i [kmol/min] and Vi is vapour flow
from stage i [kmol/min].

2. Material balance for the light component on each stage i
dMx)

_ _ 2
@ perXier Yoo T hN TV @

X; and vy, are liquid and vapour composition of light

component on stage i.
This equation leads to the following expression for the
derivative of the liquid mole fraction
d(M.x.) dM.
1 1° _ 1
dx. X,
i_ dt 1 dt 3)

dt M.
i

3. Algebraic equations
The vapour composition y, is related to the liquid
composition x; on the same stage through the algebraic
vapour-liquid equilibrium

ox;

ST v

(VN
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Abstract: Distillation is a complex and highly nonlinear industrial process. In general it is not always possible to obtain
accurate first principles models for high-purity distillation columns. On the other hand the development of first
principles models is usually time consuming and expensive. To overcome these problems, empirical models such as
neural networks can be used. One major drawback of empirical models is that the prediction is valid only inside the data
domain that is sufficiently covered by measurement data. Modeling distillation columns by means of neural networks is
reported in literature by using recursive networks. The recursive networks are proper for modeling purpose, but such
models have the problems of high complexity and high computational cost. The objective of this paper is to propose a
simple and reliable model for distillation column. The proposed model uses feed forward neural networks which results
in a simple model with less parameters and faster training time. Simulation results demonstrate that predictions of the
proposed model in all regions are close to outputs of the dynamic model and the error in negligible. This implies that

the model is reliable in all regions.

Index Terms: ARX model structure, Distillation column, Modeling, Neural networks.

1. Introduction

Advanced process control and supervision require
accurate process models. Process models can be broadly
divided into two categories: first principles models and
empirical models. First principles models are developed
based upon process knowledge and, hence, they are
reliable. Whenever feasible, first principles models
should be developed and utilized. The development of
first principles models is usually time consuming and
effort demanding, especially for complex processes. For
some poorly understood processes, it is even impossible
to build first principles models. However, in many
nonlinear systems it is extremely difficult and expensive
to obtain an accurate model of the process from first
principles. This difficulty has limited the usage of
nonlinear models to regions and systems where the model
obtained is reliable. To overcome this difficulty,
empirical models based upon process input output data
can be developed.

Distillation is an important process in the separation and
purification of chemicals. The distillation process is

highly nonlinear and In industrial practice, it is not
always possible in general to obtain accurate first
principles models for high-purity distillation columns.
Most industrial columns are used to separate multi-
component mixtures whose constituent elements are often
not known completely. the fundamental thermodynamics
of multi-component vapour-liquid equilibrium, the
physical property data, and other essential constitutive
relations required for the successful development of a
first principles model are not always available. And even
when such knowledge is available, the resulting models
usually occur in the form of a very large system of
coupled nonlinear ordinary differential equations, and
may therefore not always be the most convenient for
controller or fault detection design.

Over the last 20 years, the NNs became a well-
established methodology as exemplified by their
applications to identification and control of nonlinear
systems [1, 2].

AAD



