
Journal of Modern Processes in Manufacturing and Production, Vol. 7, No. 2, Spring 2018

65

Solving Re-entrant No-wait Flexible Flowshop Scheduling Problem;

Using the Bottleneck-based Heuristic and Genetic Algorithm

Sara Habibi1*, Shahin Ordikhani2, Ahmad Reza Haghighi3
1School of Engineering, Urmia University, Oroumieh, West Azerbaijan Province, Oroumieh, Iran

2Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
3Technical and Vocational University, Tehran, Tehran Province, Iran

*Email of Corresponding Author: sara.habibi1987@yahoo.com
Received: December 25, 2018; Accepted: March 3, 2019

Abstract
In this paper, we study the re-entrant no-wait flexible flowshop scheduling problem with makespan
minimization objective and then consider two parallel machines for each stage. The main
characteristic of a re-entrant environment is that at least one job is likely to visit certain stages more
than once during the process. The no-wait property describes a situation in which every job has its
own processing sequence with the constraint that no waiting time is allowed among operations
within any jobs. This study develops a bottleneck-based heuristic (BBFFL) to solve a flexible
flowshop problem including a bottleneck stage. Also, a genetic algorithm (GA) based on heuristics
for the problem is presented. First, the mathematical model for the problem is proposed, and then
the suggested algorithms are explained. For small-scale, the results of the BBFFL and GA are
compared to the results derived from the GAMS. For large-scale problems, the results of the GA
and BBFFL are compared with each other. For small-scale problems, the algorithms have a close
performance but the BBFFL is likely to generate much better in finding solutions in large-scale
problems.

Keywords
Flexible Flowshop, No-wait, Re-entrant, Bottleneck, Genetic Algorithm

1. Introduction
Flow shop scheduling problems have a very extensive application in different industries and have
attracted many researchers towards themselves. In a flow shop scheduling problem, there is a set of
n jobs, tasks or parts which should be processed on a set of m machines or processors in a similar
order. Also in the classic flow shop, it is assumed that there are infinite storages between steps and
hence the unfinished jobs can be stopped between the neighbor machines. In many sorts of flow
shops, jobs are processed without passing a step or a working station more than once. However, in
some industries like semiconductors fabrication, the production design may be in a way that jobs in
workshop revolve again on the machines from the beginning or pass some of the steps or working
stations more than once. Generally, this kind of flow shop sorting is called the re-entrant flow shop
in which at least one job should meet one or several stages more than once. In manufacturing
industries, there are so many samples in re-entrant flow shops. For instance, photolithography is one
of the most complex steps in the wafer fabrication process of semiconductor production.

Solving Re-entrant No-wait Flexible Flowshop Scheduling Problem; Using the Bottleneck-based Heuristic ... pp. 65-77

66

Photolithography is an optical process used for mapping multiple layers of circuit patterns on
silicon wafers and during this process; it can visit this stage more than once. Other examples are
assembling and testing the electronic circuits which are put on each other. When ever a new circuit
is added to the collection, it should pass again through some machinery. Some other examples in
this regard can be printed circuit boards (PCB), dual machine cyclical workshops, signals
processing and manufacturing scheduling for axle hub facilities
In no-wait flow shop problems, performing steps of a job on machines from the beginning to the
end are carried out uninterruptedly which means when the processing of a job on the first machine
begins, it should be moved on the machines continuously and uninterruptedly until its procedure is
completed on the last machine. Uninterrupted limitations naturally are created based on the
specifications of jobs or the processing environment. The examples consist of the processes related
to extraction and melting metals in which the iron should be remained hot during the operations,
chemical processes with unsustainable intermediate productions, the absence of a central
warehouse, computer systems, foodstuffs processing, pharmaceutical industry or semiconductors
test facilities. A perfect review of about modeling and integration of planning, scheduling and
equipment configuration about semiconductors can be found in [1].
In the real world, the bottleneck phenomenon occurs repeatedly in the majority of manufacturing
systems. Goldratt and Cox stated that the bottleneck sources would evaluate the overall
performance. Bottleneck management is a critical task in workshops and is very useful in
manufacturing scheduling. Scheduling approaches for flow shop problems and workshop
manufacturing by considering bottleneck steps consist of three steps as follows:
1) Identifying the bottleneck step
2) Scheduling the bottleneck step
3) Scheduling the non-bottleneck step
Drum-Buffer-Rope scheduling method or DBR presented by Goldratt and Fox has been concluded
from limitations theory. This method concentrates on limited resources scheduling (bottleneck
resources) and normally treats the other resources (non-bottleneck resources). However, Canoy
stated that usually, the exact scheduling of secondary resources for temporal support assurance was
one of the most essential limited resources. Therefore, several researchers considered all of the
resources and presented some methods for their solution. The bottleneck in a process occurs when
the input reaches faster than the completion of the next step.
In this paper, no-wait re-entrant flow shop scheduling problem with considering back warding in
each sequence for jobs is investigated, and for its solution, an algorithm based on bottleneck and
meta-heuristic genetic algorithm is applied. Other parts of the paper are organized as follows:
In the second section, a literature review about the investigated subject in this paper is presented. In
the third part of the article, the definition of the problem and its modeling are investigated. The
fourth and fifth parts of this paper are related to solving the proposed problem using the proposed
algorithms. The seventh part is related to the obtained results produced by running the proposed
algorithms. Also, the seventh part examines the validity of the proposed algorithm in this paper and
finally in the eighth part, conclusion and suggestions for future studies are presented.

Journal of Modern Processes in Manufacturing and Production, Vol. 7, No. 2, Spring 2018

67

2. Literature Review
Many papers in flow shop scheduling traits with considering the re-entrant feature of the
environment by the no-wait system have been printed so far. However considering these two
features simultaneously according to the broad application which is used in robotic industries, is not
noticed by researchers. Robotic flow shops are used extensively in the steal and electronic
industries in which according to the features of the technology itself, after that the processing is
completed on a machine, it should be separated from the machine immediately and transformed
uninterruptedly to the next machine in the process. Otherwise, defective items may be produced.
In the re-entrant system trait, Choi and Kim in took into account the minimization problem of
maximum completion time of jobs and proposed several heuristic efficient algorithms for the
problems [2]. Chen et al. also suggested a combined genetic algorithm for the same problem [3-4].
Investigated dual machine re-entrant flow shop scheduling problem with minimization of the
maximum completion time of jobs objectives and developed several heuristic methods for solving
the problem [5]. Chu et al. in presented a hill climbing algorithm as well as an adapted
genetic algorithm for solving re-entrant flowshop scheduling problem with various resource
considering qualification matching [6]. Authors in presented a heuristic algorithm for solving the
re-entrant flow shop problem using the k-insertion technique for minimization of total flow [7].
Choi and Kim used a branch and bound and also three heuristic methods for solving a problem with
the objective function of total delay [8]. Tasouji Hassanpour et al. considered the production
environment of no-wait re-entrant flow shop with the objective of minimizing makespan of the jobs
and developed a mathematical model and solved it using three algorithms including simulated
annealing, genetic algorithm and a bottleneck based heuristic algorithms [9]. Adressi et al. in
studied a group scheduling problem in no-wait flexible flowshop considering two stages with group
sequence-dependent setup times and random breakdown of the machines [10]. Minimizing the
makespan for a re-entrant hybrid flow shop scheduling problem with time window constraints was
the focus of using a genetic algorithm hybridized ant colony optimization [11].
Regarding the no-wait trait, studied the group scheduling problem of jobs in a single stage no-wait
flow shop environment in which setup times are sequence dependent using both genetic and
simulated annealing algorithms [12]. Many pieces of research have been done on solving the no-
wait flow shop scheduling problem, considering different criteria like maximum completion time of
jobs and the time performed in the total flow which is led to present many heuristic and meta-
heuristic algorithms. There are many investigations which were carried out in no-wait flow shop
scheduling problem and continued until today such as the research of which studied the
minimization of makespan in a two-machine no-wait flow shop problem with separable setup times
and single server-side constraints [13]. A mathematical formulation presented for the problem and a
hybrid algorithm are developed by using the variable neighborhood search and Tabu search. Could
be pointed out as one of the recent jobs in this regard [14]. He studied dual machine no-wait flow
shop scheduling problem, considering group setting time. Maya et al. studied the problem of
minimizing the makespan of jobs in a no-wait flowshop environment, considering two batch
processing machines. In this research, jobs with different sizes have been batched together, without
surpassing the capacity of manufacturing machines. Another assumption of this research is that the
start of a batch processing is subject to the availability of all the jobs existing in the batch. They

Solving Re-entrant No-wait Flexible Flowshop Scheduling Problem; Using the Bottleneck-based Heuristic ... pp. 65-77

68

developed a greedy randomized adaptive search procedure (GRASP) algorithm to tackle the
problem [15].
According to the performed research, the importance of research in no-wait re-entrant flow shop
scheduling trait is observed. As one of the most recent works in no-wait scope, addressed the no-
wait flow shop scheduling problem under makespan and flowtime criteria utilizing a hybrid meta-
heuristic algorithm based on ant colony optimization and simulated annealing algorithm [16].

3. Definition of the Investigated Problem
In the flow shop scheduling problem (FSS), it is assumed that there is a set of jobs J={1,….,n} that
should be processed on a set of machines M={1,….,m}. In this problem, there are m machines in
series that each of the tasks is to be processed on the machines. All jobs have the same processing
route, meaning that each job is processed first on machine 1, then on machine 2 and so on until the
last machine finishes its work on the job. Another assumption considered for this problem is the
limitation of the waiting time that this assumption can occur in multi machines environments like
flowshop and jobshop. This assumption causes processing of jobs on the machines to be performed
uninterruptedly and without any delays between machines. In addition to the above assumptions,
there is an other assumption in which jobs can go backward several steps and perform their
processing job. The problem considering these assumptions is called integrated re-entrant flow shop
scheduling and no-wait time problem which is a kind of Hybrid Flow Shop Scheduling problem
(HFSS).
This problem based on notation is shown as	����|���,
�
�, � � ����|���� [17]. The objective
function considered in the investigated problem is the minimization of the maximum completion
time of jobs on the machines.
In addition to the previous assumptions, the following assumptions are also considered for the
problem:
Two operations of a job are not performable simultaneously. There is no interruption, which means
a job remains on its related machine until completing its process. During the performance of jobs,
there is no pre-emption, which means if the operation of a job is processed; the next operations of
the job should also be processed. The processing time of each job is independent of the order of
performing jobs. The preparing time is independent of the order of performing jobs and is
considered in the jobs processing time. The transportation time between machines is negligible.
Breakdown, maintenance time and costs are not considered in the model. Machines may be inactive
for some time. Each device does not process more than one job simultaneously. Technical
limitations are known and invariable. There is no random mode, which means processing times,
setup times, entry parts times and the number of jobs has definite values. Machines are available
continuously during the planning horizon.

4. Problem Modeling
The symbols used for modeling of the problem are introduced as follows:
Indexes:
i job index (i= 1,...,n)
j operation index {1,2,..., }ij n=

Journal of Modern Processes in Manufacturing and Production, Vol. 7, No. 2, Spring 2018

69

k machine index (k=1,...,m)
l machine index in job stations � � �1,2, … , ��
h order of jobs on each machine 	� � �1,2, … , ���
Parameters:

ijp processing time of j th operation of the job i

jka 1 if the j th operation of a job is performed on machine k, 0 otherwise

Rej 1 if an operation includes re-entrant condition after the j th operation, 0 otherwise

RejS if an operation includes re-entrant condition after j th operation that equals the
machine index, 0 otherwise

 a very big number which can be considered as a sum of processing times of all the
operations

Variables:

maxC maximum completion time of jobs

ijs starting time of the j th operation of an i th job

khpb processing time of the job positioned in an hth order of akth machine

!"�#$ starting time for processing the job positioned in the hth order of the kth machine in
an lth station

h
ijkr 1 if the j th operation of the i th job which needs to be operated on akth workstation is

positioned in the hth order of an l th machine, 0 otherwise

(1) maxmin imize C

(2)
; , ,

lh
ijk jk i j k

h

r a ∀=∑

(3) 1; , ,lh
ijk

i j

r k h l≤ ∀∑∑

(4)
, 1, 1 ; , 1, 1, Re(1) 1lh lh

i j k ijk
l l

r r i j k h j− − = ∀ > > − <>∑ ∑

(5) / / /
, 1, 1 , , ; , , 1, , Re(1) 1, Re()lh

i j k i j k
l l

r r i j k k h j S j k− − = ∀ > − = =∑ ∑

(6) 1
, , 1 , , , , ,* ; , 1lh

k l h i j i j k k l h
k l h

sb p r sb i j−
− + ≤ ∀ >∑∑∑

(7)
, 1 , 1 , 1, , ;* , 1lh

i j i j i j k i j
k l h

s p r s i j− − −+ = ∀ >∑∑∑

(8) (1)* ; , , , ,lh
ij ijk klhs r M sb i j k l h≤ − + ∀

(9) (1)* ; , , , ,lh
klh ijk ijsb r M s i j k l h≤ − + ∀

(10)
max * ; ,lh

ij ij ijk
k l h

C s p r i j≥ + ∀∑∑∑

(11) {0,1}, 0, 0, 0, , , ,h
ijk ij kh khr s sb sb i j k h= ≥ ≥ ≥ ∀

Solving Re-entrant No-wait Flexible Flowshop Scheduling Problem; Using the Bottleneck-based Heuristic ... pp. 65-77

70

Objective function consists of minimizing the maximum completion time of the jobs. Equation (2)
denotes that when the operation of one job is assigned to any particular machine, this operation can
be positioned in any order of the machine. Constraints (4) and (5) are added to the problem to
comply with the assumption of the permutation flow shop problem. Constraint set (6) is attached to
the model to set the starting time of jobs on each machine in stations. This constraint states that as
long as the process of the previous job is not completed, the current work process cannot be started.
Constraint set (7) adjusts the starting time of operations which are positioned in the processing
route, in other words, it makes sure that successive operations of any machine are performed after
the preceding ones. Constraints (8) and (9) have been added to the model to adjust the starting time
of any operations of each job and starting time of jobs on machines. Constraint (10) calculates the
maximum completion time of the jobs. Finally, the constraint set (11) determines the nature of the
model variables.

5. Solving No-wait Re-entrant Flow Shop Scheduling Problem
Authors in [3] showed that the re-entrant flow shop scheduling is even for problems with two
machines; Np-hard problem if minimization objective function of the maximum time of completing
jobs is considered. It can be shown that the addressed problem in this paper is also Np-hard. Thus,
for solving the problem, in addition to the exact solution for small-scale problems, the heuristic
algorithm based on bottleneck and the meta-heuristic genetic algorithm is proposed for solving the
small-scale problems and large-scale problems as well.

5.1 The Proposed Bottle Neck-based Algorithm
The Bottleneck-Based Flexible Flow Line? (BBFFL) heuristic method is proposed for solving the
problem in this paper. The proposed heuristic method belongs to the category of heuristic methods
for producing a solution.
The main idea is in such a way that jobs scheduling in bottleneck step can have some effects on the
performance of the heuristic method for scheduling of jobs in all the steps hence BBFFL produces
the scheduling schedule based on the produced scheduling programs in the bottleneck station.
The heuristic method consists of three steps:
1) Identifying the bottleneck workstation: In this step first, the workload in each workstation is
defined as the total average of processing times of all of the processed activities in that workstation
which is divided to the number of machines in that step. For example, the workload in the
workstation J is calculated by the following relation:

n

j ij j
i

R P m
=

 =

∑

1
(12)

The workstation that has a bigger Rj is defined as the bottleneck station.
2) Generating an initial sequence of the jobs by a bottleneck-based initial sequence generator
(BBISG)
In this step, the working stations are divided into three subsystems:

Up-stream sub-system is consists of the previous stations of the bottle neck station and the bottle
neck sub-system which includes the bottle neck station and down-stream sub-system which
comprises the working stations after the bottle neck station. BBISG produces a sequence of jobs

Journal of Modern Processes in Manufacturing and Production, Vol. 7, No. 2, Spring 2018

71

based on total processing times in up-stream sub-system and down-stream sub-system of jobs.
The steps of the algorithm are as follows:

• Step 1: Set Ω to.

• Step 2: Divide the system into three up-stream, down-stream, and bottleneck system. Compute

the total minimum processing time values for the up-stream sub-system (%�&
�&'(and the down-

stream sub-system (��&
�&').

• Step 3: If fp+
,+- . lp+

,+-, allocate jobs to U, otherwise allocate them to L.

• Step 4: If U=∅, go to step 5. Select job with a minimum value for fp+
,+- for i ∈ U. If there is

more than one job for the minimum value of fp+
,+-, select the job with maximum processing

average time in the bottleneck step. If more than one job has this characteristic again, select
randomly. Add the selected job to Ω set and omit from U. Do step 4 again.

• Step 5: If L=∅, go to step 6. Select job with a maximum value for lp+
,+-for i ∈ L. If there is more

than one job for the maximum value of lp+
,+-, select the job with maximum average processing

time in the bottleneck step. If more than one job has this characteristic again, select randomly.
Add the selected job to Ω set and omit it from L set. Do step 5 again.

• Step 6: Obtain an initial sequence of jobs in Ω.
• Step 7: Stop.
In this algorithm, the parameters are defined as follows:

%�&
�&': Total minimum processing time required for job i before the bottleneck stage b

��&
�&': Total minimum processing time required for job i after the bottleneck stage

1) Applying a bottleneck-based multiple insertion procedure (BBMIP) to the initial sequence to
generate the final schedule. This step of the algorithm includes the following steps:
• Step 1: Select the first job in the initial sequence generated by BBISG and let it be the
current partial sequence.
• Step 2: Select the next job in the initial sequence and insert the job into the positions before,
between, and after every two consecutive jobs of the current partial sequence.

• Step 3: Calculate makespan for each partial sequence produced in Step 2 while adjusting
jobs' entering sequence at the bottleneck stage to be the same as the one at the first stage.
• Step 4: Select the partial sequence with minimum makespan and let the partial sequence be
the current partial sequence.
• Step 5: If the current partial schedule includes all the n jobs, then stop; otherwise go to
Step2.

5.2 The Proposed GA Approach
The first step in this algorithm is linking the main problem with the genetic algorithm (GA)
structure. Chromosome in this problem has two parts. The first part indicates the priority of
processing of jobs on workstations and the second part suggests that jobs in each workstation are
processed on the available machines in the station. In the following, each section will be explained.
• Part 1: For the investigated problem in this study, according to the mapping feature which
exists for the problem, the chromosome which is used for showing the solution of the problem has a

Solving Re-entrant No-wait Flexible Flowshop Scheduling Problem; Using the Bottleneck-based Heuristic ... pp. 65-77

72

length equal to the number of jobs of the problem and is independent of the number of workstations.

In other words, the chromosome is shown by a sequence of jobs number as 1 �
2314, 324, … , 3�4(where the number of each job is repeated only once in each chromosome. The
priority of processing of each job on the stations is in the order of their appearance on the
chromosome from left to right or in another word, the priority of jobs operation processing on each

machine is based on their earliest occurrence in the sequence vector 1. A chromosome for a
problem with six jobs is shown in Figure 1. In this chromosome, the order of jobs processing on
workstations is in a way that at first, job 1 is processed on all of the working stations and then job 6
is processed according to the completion processing time of job 1 on each workstation and this
characteristic that job has no waiting time between each workstation, is processed on all of the
workstations. This approach is continued until all of the jobs are processed and completed on
stations.

1 6 4 5 2 3
Figure1. Representation of chromosome

• Part 2:
This part of chromosome helps to show that every job in each workstation is processed on which
machines.
For this part of the chromosome, a length equal to the total number of operations of jobs is
considered. That means if it is assumed that there are N jobs and the number of operations of each
job is equal to O, the length of this chromosome will be equal to N*O. The first O genes of this
chromosome indicate the number of machines which the job with a priority of 1 should be
processed on them.
This way of coding causes each mapping of chromosomes genes to is converted into feasible
scheduling for the problem on each machine.
The role of a fitness function is to show the fitness of each chromosome. The fitness function
constitutes the foundation of the selected phase. For the investigated problem in this paper, since the
objective function is the minimization problem, the fitness value of each chromosome in each
generation is considered equal to the deviation of the objective function corresponding to the
chromosome, with the worst objective function in that generation plus 1.
��& � 5�6 � 5�& 7 1 (13)

Amongst the most common performed methods, the two-point intersection can be pointed out
which is used in this paper.
In the proposed problem, for implementation of mutation operator, two genes of a chromosome
which have different values are selected randomly, and their values are displaced.
In this paper for selecting the survivals, three approaches are implemented: crossover operator,
mutation operator and elites (chromosomes transferred to the next generation without any change).
In order to generate better solutions, a local search approach is performed on 50 percent of the new
generation.
Preparation of the algorithm means identifying the initial population number, intersection
percentage, mutation and reproduction (elite percent) and these values are different for problems
having different objectives. These preparations will be performed for the algorithm in the parameter

Journal of Modern Processes in Manufacturing and Production, Vol. 7, No. 2, Spring 2018

73

setting for the investigated problem. Reaching a certain number of generations is considered as the
final conditions for the algorithm.
Different termination conditions can be applied to the GA algorithm. For the proposed GA
algorithm, one of the following conditions causes the algorithm to reach its end:
1. Generating a specified number of generations.
2. No improvement is observed during a specified period of generations.

5.3 Setting the Genetic Algorithm Parameter
In this paper, the sample problems are divided and tested into two categories of small and large
scales as shown in Table 1. For setting the parameters related to the genetic algorithm used in this
paper, the Taguchi method has been used in which the optimum parameters for small and large-
scale problems are shown in Table 2 and 3:

Table1. Small and large-scale problems
Small-scale Large-scale
m×n m×n
3×4 10×20
5×4 15×20
7×4 20×20
3×6 10×30
5×6 15×30
7×6 20×30
3×8 10×40
5×8 15×40
7×8 20×40

Table2. Parameter tuning for small-scale problems

Initial
population

Number of
generation

Crossover
percentage

Mutation
percentage

Elite percentage
Number of

local
searches

100 50 0.8 0.13 0.07 5

Table3. Parameter tuning for large-scale problems

Initial
population

Number of
generation

Crossover
percentage

Mutation
percentage

Elite percentage
Number of

local
searches

150 100 0.7 0.15 0.15 10

6. Computational Results
The mathematical model developed for the problem is simulated by the GAMS software and is
solved by CPLEX solver. Also for coding, the presented solving methods by the C++ programming
language are used. All the computations are performed on the computer with 4GBRAM,
IntelCore2DuoP7550CPU, 2.26 GHz.
The processing times of jobs follow a uniform distribution between 1 and 100. The genetic
algorithm is run four times for the proposed problems, and the average of solutions and the best

Solving Re-entrant No-wait Flexible Flowshop Scheduling Problem; Using the Bottleneck-based Heuristic ... pp. 65-77

74

solution are produced by four times running. The average running times for problems are shown in
columns of the computational results table. For evaluating the performance of the presented
methods in the small-scales, the obtained results by the GAMS, bottleneck heuristic algorithm and
genetic algorithm are compared with each other as summarized in Table 4. For the large-scale
problems, since the solution of the problem is not obtained by a mathematical model in a reasonable
time, the proposed solving methods are evaluated.
Table 4 shows the computational results related to small-scale problems, in accordance with Table
1. Ascan be concluded from the table, the genetic algorithm and bottleneck algorithm are
respectively capable of finding 6 and four optimal solutions. There are four problems in which the
solutions based on the bottleneck algorithm are better than or equal to the solutions produced by the
GA. Times related to every two algorithms are negligible but the overlay of the times of the
proposed algorithm is better than the GA. Regarding the objective function, both values have a
negligible difference with solutions of the GAMS, but the GA algorithm produced better solutions
for small-scale problems overall. The summary of the obtained results for the small-scale problems
is reported in Table 5. The average error percentage of each solution method concerning obtained
solutions of the GAMS, number of obtained optimum solutions from each algorithm and average
times of solution methods and the GAMS in seconds are reported in columns of this table
respectively.
Tables 6 and 7 respectively indicate computational results of the large-scale problems and summary
of results obtained from the large-scale problems. As can be seen from the table, in six problems,
the proposed algorithm outperforms the GA, and the total average of its solutions concerning the
mean average of the solutions of the GA is 2.7% better. Briefly, the obtained solutions of bottleneck
algorithm in the large-scale problems have better quality, but regarding the computational time,
they need more time to find the solution. In total, it can be concluded that for small-scale and large-
scale problems, the genetic algorithm and the bottleneck algorithm are more appropriate
respectively.
The nonparametric Kruskal-Wallis test is used for validation of the algorithm in this paper. Both
obtained results by the two algorithms were compared according to the abnormalities of the
distribution in the confidence level of 95% using Minitab 16 software. As can be seen in Figure 2, it
can be concluded that equality of the values obtained from the proposed algorithm cannot be
rejected at the 95% confidence level.

Journal of Modern Processes in Manufacturing and Production, Vol. 7, No. 2, Spring 2018

75

Table4. Computational results for the small-scale problems for the GAMS, GA, and BB

m×n
GAMS GA BB

Solution Time
Average
Solution

Best Solution Time Solution Time

3×4 441 5.08 441 441 0.344 441 0.051
5×4 632 10.25 632 632 0.378 632 0.007
7×4 654 11.723 677.5 671 0.421 841 0.012
3×6 598 788.11 598 598 0.393 598 0.023
5×6 637 1440.24 678.25 637 0.416 690 0.037
7×6 818 2164.12 844 827 0.468 884 0.065
3×8 729 3606 749 755 0.467 729 0.067
5×8 884 3602 884 884 0.567 927 0.144
7×8 925 3603.45 941.5 925 0.663 1147 0.215

Table5. Computational results for the small-scale problems (1)

Percent of optimal
solutions

Average error of methods
compared to the GAMS

Average computational time (seconds)

GA BB GA BB GA GAMS BB
66.67 44.44 0.019 0.082 0.457 1692.33 0.0.69

Table6. Computational results for the large-scale problems for the GA and BB

m×n
GA BB

Average
Solution

Best
Solution

Average
Time

Solution Time

3×20 2573.75 2464 0.866 2482 8.498
5×20 3331 3265 1.136 3279 13.705
7×20 3593 3581 1.358 3545 20.935
3×30 4032 4479 2.265 4444 39.944
5×30 4629 4479 3.023 4676 91.199
7×30 5116.25 5038 3.686 4950 163.740
3×40 5075.25 4983 2.964 5054 186.040
5×40 5678.75 5489 3.370 5721 331.508
7×40 6465.75 6442 4.846 6330 555.884

Table7. Computational results for the large-scale problems [1]

Average error of the
BB compared to the

GA

The BB average
computational time

(seconds)

The GA average computational time
(seconds)

-0.0279 156.829 2.612

Solving Re-entrant No-wait Flexible Flowshop Scheduling Problem; Using the Bottleneck

Figure

7. Conclusion and Suggestion for the
In this paper, the bottleneck-based heuristic and meta
for solving the flexible flowshop problem with considering re
the manufacturing environment. The mathematical model developed for the prob
by the GAMS software and solved by
methods, the C++ programming language is used. Also, for comparing the two algorithms in terms
of equality of the average of the obtained solutions from
Kruskal-Wallis was used. For the small
are compared with the obtained results by
large-scale problems, the results obtained by
with each other. The computational results show that the bottleneck
results for the large-scale problems and genetic algorithm for the small
Solving the proposed problem using different meta
results in this paper and also improvement of the existed algorithm in this paper is suggested for the
next studies. Also, considering case studies to make t
for jobs and limitations of maintenance and repairing of machinery can be some of the researching
routes. The heuristic methods for obtaining
proposed.

8. References
[1] Fordyce, K., Milne, R.J., Wang

Planning, Scheduling, and Equipment Configuration in Semiconductor Manufacturing: Part I.
Review of Successes and Opportunities.
Applications and Practice. 22(

[2] Choi, S.W. and Kim, Y.D. 2008
Computers & Operations Research

[3] Chen, J.S., Pan, J.C.H. and Lin
Flow-shop Scheduling Problem.

[4] Amin-Naseri, M. R. 2017. Solving Re
of Industrial Engineering Research in Production Systems.

wait Flexible Flowshop Scheduling Problem; Using the Bottleneck-based

76

Figure2. Results for the Kruskal-Wallis test

uggestion for the Next Studies
based heuristic and meta-heuristic genetic algorithms were

for solving the flexible flowshop problem with considering re-entrant and no-
the manufacturing environment. The mathematical model developed for the prob

GAMS software and solved by the CPLEX solver. For coding the presented solution
programming language is used. Also, for comparing the two algorithms in terms

of equality of the average of the obtained solutions from each technique,
Wallis was used. For the small-scale problems, the results obtained by

obtained results by the bottleneck and genetic algorithms. Likewise, for the
results obtained by the bottleneck and genetic algorithm are compared

with each other. The computational results show that the bottleneck-based algorithm shows better
scale problems and genetic algorithm for the small-scale problems.

Solving the proposed problem using different meta-heuristic algorithms and comparing the obtained
results in this paper and also improvement of the existed algorithm in this paper is suggested for the
next studies. Also, considering case studies to make the problem more applicable and setup times
for jobs and limitations of maintenance and repairing of machinery can be some of the researching

euristic methods for obtaining a lower limit or solution of the problem are also

Wang, C.T. and Zisgen, H. 2015. Modeling and Integration of
Planning, Scheduling, and Equipment Configuration in Semiconductor Manufacturing: Part I.
Review of Successes and Opportunities. International Journal of Industrial Engineering

(5): 575-600.
2008. Minimizing makespan on an m-machine re

Computers & Operations Research. 35(5): 1684-1696.
and Lin, C.M. 2008. A Hybrid Genetic Algorithm for the

roblem. Expert Systems with Applications. 34(1):
Solving Re-entrant No-wait Flow Shop Scheduling Problem

Research in Production Systems. 4(9): 271-279.

based Heuristic ... pp. 65-77

heuristic genetic algorithms were proposed
-wait specifications for

the manufacturing environment. The mathematical model developed for the problem was modeled
CPLEX solver. For coding the presented solution

programming language is used. Also, for comparing the two algorithms in terms
each technique, then on parametric

scale problems, the results obtained by the GAMS software
bottleneck and genetic algorithms. Likewise, for the

bottleneck and genetic algorithm are compared
based algorithm shows better
scale problems.

heuristic algorithms and comparing the obtained
results in this paper and also improvement of the existed algorithm in this paper is suggested for the

he problem more applicable and setup times
for jobs and limitations of maintenance and repairing of machinery can be some of the researching

lower limit or solution of the problem are also

Modeling and Integration of
Planning, Scheduling, and Equipment Configuration in Semiconductor Manufacturing: Part I.

Industrial Engineering. Theory,

machine re-entrant flowshop.

lgorithm for the Re-entrant
 570-577.

wait Flow Shop Scheduling Problem. Journal

Journal of Modern Processes in Manufacturing and Production, Vol. 7, No. 2, Spring 2018

77

[5] Jing, C., Huang, W. and Tang, G. 2011. Minimizing Total Completion Time for Re-entrant
Flow Shop Scheduling Problems. The Oretical Computer Science. 412(48): 6712-6719.

[6] Chu, F., Liu, M., Liu, X., Chu, C. and Jiang, J. 2018. Reentrant Flow Shop Scheduling
Considering Multiresource Qualification Matching. Scientific Programming. 2018: 1-9.

[7] Jing, C., Tang, G. and Qian, X. 2008. Heuristic Algorithms for Two Machine Re-entrant Flow
Shop. The oretical Computer Science. 400(1-3): 137-143.

[8] Choi, S.W. and Kim, Y.D. 2009. Minimizing Total Tardiness on a Two-machine Re-entrant
Flowshop. European Journal of Operational Research. 199(2): 375-384.

[9] Hassanpour, S.T., Naseri, M.A. and Nahavandi, N. 2015. Solving Re-entrant no-Wait Flow
Shop Scheduling Problem. International Journal of Engineering-Transactions C: Aspects. 28(6):
903-912.

[10] Adressi, A., Hassanpour, S. and Azizi, V. 2016. Solving Group Scheduling Problem in No-
wait Flexible Flowshop with Random Machine Breakdown. Decision Science Letters. 5(1): 157-
168.

[11] Chamnanlor, C., Sethanan, K., Gen, M. and Chien, C.F. 2017. Embedding Ant System in
Genetic Algorithm for Re-entrant Hybrid Flow Shop Scheduling Problems with Time Window
Constraints. Journal of Intelligent Manufacturing. 28(8): 1915-1931.

[12] Adressi, A., Bashirzadeh, R., Azizi, V. and Tasouji Hassanpour, S. 2014. Solving Group
Scheduling Problem in No-wait Flow Shop with Sequence Dependent Setup Times. Journal of
Modern Processes in Manufacturing and Production. 3(1): 5-16.

[13] Samarghandi, H. and ElMekkawy, T.Y. 2013. Two-machine, no-wait job shop problem with
separable setup times and single-server constraints. The International Journal of Advanced
Manufacturing Technology. 65(1-4): 295-308.

[14] Pang, K.W. 2013. A Genetic Algorithm based Heuristic for Two Machine no-wait Flowshop
Scheduling Problems with Class Setup Times that Minimizes Maximum Lateness. International
journal of production economics. 141(1): 127-136.

[15] Maya, J., Muthuswamy, S., Vélez-Gallego, M.C. and Rojas-Santiago, M. 2014. Minimising
Makespan in a No-wait Flow Shop with Two Batch Processing Machines: a Grasp Algorithm.
International Journal of Industrial and Systems Engineering. 17(2): 152-169.

[16] Riahi, V. and Kazemi, M. 2018. A New Hybrid Ant Colony Algorithm for Scheduling of No-
wait Flowshop. Operational Research. 18(1): 55-74.

[17] Graham, R.L., Lawler, E.L., Lenstra, J.K. and Kan, A.R. 1979. Optimization and
Approximation in Deterministic Sequencing and Scheduling: a Survey. In Annals of discrete
mathematics. 5: 287-326.

