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Abstract

In this paper, we present a simulated annealing) (8% a genetic algorithm (GA) based on
heuristics for scheduling problem of jobs in vitti@llular manufacturing systems. A virtual
manufacturing cell (VMC) is a group of resourceattis dedicated to the manufacturing of a part
family. Although this grouping is not reflected the physical structure of the manufacturing
system, but machines are spread on the shop flo@iqally. In this paper, there are multiple jobs
with different manufacturing processing routesstiwe develop the mathematical model for the
problem, and then we present the suggested algwitiThe scheduling objective is weighed
tardiness and total travelling distance minimizatidhe problem is divided into two branches:
small scale and large scale. For small scale,dabelts of GA and SA are compared to GAMS. For
large scale problems, due to the time limitation3600 seconds, the results of GA and SA are
compared to each other. Computational results stiat both SA ad GA algorithms perform
properly but SA is likely to turn out well in findlg better solutions in shorter times especially in
large scale problems.

Keywords
Virtual cellular manufacturing systems, Schedulirg§mulated annealing, Genetic algorithm,
mathematical formulation

1. Introduction

A system should be able to respond to product degjgchanges and production demands without
requiring great deals of investments. It shouldessarily conform itself with the new conditions.
Manufacturing systems should continuously accomnsottemselves with the dynamic conditions
of the global market so that they can survive i ttompetitive world of business and
manufacturing. Traditional production methods sashproduct type and functional type are not
able to provide these requirements properly, tioeeed new method is required to obtain these vital
characteristics. Group technology (GT), a strategggested for these new requirements, is a
manufacturing method through which the parts thatehsimilarities, named part families, are
grouped together in order to achieve the said gddie concept of the group technology has
resulted in the cellular manufacturing (CM) andtuat cellular manufacturing (VCM) systems.
These two manufacturing methods have attractetia lttention during recent years.

45



Scheduling Problem of Virtual Cellular ManufactgiSystems (VCMS); Using Simulated Annealing ..., 4560

Prior studies have shown that cellular manufactuisnsuperior to job shop manufacturing in cases
which require long set-up and long material hargdimes, and where customer demand is stable
(Greene and Sadowski [1], Wemmerlov and Hyer [2¢rfi4 and Tersine [3]). The virtual cellular
manufacturing system has its roots in the conagpbduced by Mclean et al [4]. Virtual cellular
manufacturing system (VCMS) is a branch of CM inickithe cells are not physically defined and
can be changed during the manufacturing processding to the production schedule. A virtual
cell, deduced from the word virtual, is a kind efldhat possesses virtual character, meaning, in a
period of time it exists but in other period candlieninated. In fact the cells are not considered a
fixed physical grouping of machines spread on therfshop but as data files in a virtual cell
controller. The difference between traditional €e&lhd virtual cells is that the assignments of the
jobs in a virtual manufacturing cell are altered &ycontroller named virtual cell controller
periodically. The cells are not physically fixed wirtual cells and they can change without
displacing the machines. The workstations in ausirtsystem will not be incarcerated on the
formation of a virtual manufacturing cell, but axking advantage of the machine capacities they
can be assigned to other cells to perform operstjgmovided that there are excess capacities.
Similar to the traditional cells, some promisingvaitages of virtual cells are better quality and
production control. Other advantages of this apgroaclude higher efficiency, more improved
flow performance and better flexibility than the CM

Virtual concept of VCM, to some extent, has unradesome problems of CM such as machine
utilization and unbalanced workload. Also great iayements are detectable in the results, but
many aspects of VCM such as scheduling of VCM hateattracted a great deal of attention from
researches due to the complexity of the model.

Scheduling problem of VCMS is similar to the scHeduproblem of Jobshop with two significant
differences. The distinction between schedulingofmm of VCMS and Jobshop lies in machine
type and total travelling distance. The conceptathine type existing in VCMS means that there
are multiple machines with same characteristiceawthh machine type and are spread on the shop
floor. Provided that each machine type is regardeda single machine, the problem will be
propelled to Jobshop problem. The second distinchetween these two issues is that total
travelling distance should be taken into considenaas one of the objective functions. It is more
realistic that a process which needs two machipestyto complete its route is processed on two
machines that are close to each other than two imeglwith notable distance. In this case the
concept of forming different cells will become mutiore tangible. Thus, scheduling of VCMS has
more complexity in comparison with Jobshop becatisequires the machine selection among
some identical machines of a machine type in anlditdb sequencing of operations.

2. Literature Review

Slomp et al [5] designed virtual manufacturing €ellith mathematical programming. Kesen et al.
[6] defined three types of systems as follow: dalHuayout (CL), process layout (PL) and virtual
cells (VC). They used a simulation approach to camaphese methods under performance metrics
such as mean flow time and mean tardiness. Theypatgoosed an ant colony optimization model
based upon the available simulations to represenfiture simulations. The results showed that
VCs are more flexible compared to other mentionethimds without taking into account the setup
time. Kesen et al. [7] presented a genetic algoritrased approach for scheduling of VCMS
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considering the weighed makespan and total trayelistance as the objectives for minimization of
the objective function. The results of the genafiproach were compared with the mixed integer
programming (MIP) approach [8]. The results shoat tienetic algorithm can be easily substituted
with the MIP model. Mak et al [9] developed a newthematical method for formulation of the
scheduling of VCMS. They divided the total schedglhorizon into several time periods during
which the product mix and demand are not the sémiethey are deterministic. These researches
assumed that when first operation of any job stamst operation must start in the next period.
They also assumed that successive operation waijdstart at the beginning of the next period
even if the preceding one were finished earlieeyrttilized constraint programming to deal with
the intricate nature of the problem. Mak et al.][fdfesented a hybrid approach based on discrete
practical swarm optimization and constraint prograng to solve the scheduling problem of
VCMS. The objective taken into account was totavétling distance over the entire planning
horizon. The results revealed that the hybrid metlespecially for large scale problems, can result
in better scheduling solutions. Babu et al [11] $MEs developed virtual cellular manufacturing
system. Khilwani et al [12] designed a new methodwlfor virtual cellular manufacturing systems.
Mahdavi et al [13] consider multi objective cellrfmation and production planning in dynamic
VCMs. Kannan [14] considers a simulation analydishe impact of family configuration for
VCMs. Nikoofarid and Aalaei [15] consider productiplanning and worker assignment in a
dynamic cellular manufacturing systems.Hamedi €tlL&] solve capability-based virtual cellular
manufacturing systems formation in dual-resourcastrained settings by using Tabu search
algorithm. The remaining sections of this paperaganized as follows:

The problem description and mathematical modelesgnted in section 3. In sections 4 and 5, we
introduce the genetic algorithm and simulated alnmgdboased heuristic respectively. Conclusion
and Computational results are presented in se6tenmd finally references are in section 7.

3. Problem description and Mathematical model

In this section, a mathematical model is presetdedescribe the characteristics of the proposed
model. Before developing a mathematical model, fill®ewing assumptions are made: In the
problem there ara jobs andm machine types. The scheduling objective is weiglaediness and
total travelling distance minimization. Each maehtgpe is able to perform a special operation and
consists of several identical machines locatedffierént locations on the shop floor. All machines
of a machine type have the same speed and chastcserEach job has a pre-determined
processing route and should get through machinestggcording to the scheduled program, that is,
the machines by which each operation of a job carpérformed are known in advance. Each
operation of a job has a specified processing tonethe related machine types which is
independent of the job's processing route and psieg order. Each operation is processed only on
one of the machine types and includes tardinesaltyeper each tardiness unit and delivery time
(due date)o ;represents thggh operation of the job If g ; is performed on machine typeall of

the individual machines of that type can be choserthere is a competition among these machines
and this makes the problem expose to two issueshima assignment for the operations and
scheduling of operations. Each job can visit maeliypek at most once. Jobs are presented in
batches. Some information about the jobs such tah Is&zes, processing times, operation sequence,
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transportation cost of each job and distance betweeeh pair of machines are known. Whepis

assigned to a machine type all of the batch operations must be performedit@i machine.
Interruption during the processing is not allowed.

3.1 Assumptions

No preemption is allowed in the model. All jobs anailable at zero time. We are not allowed to
move the machines. The transportation time andntlaehine setup time can be disregarded.
Breakdown and maintenance time and costs are msidered in the model. The parameters and
variables used in this model are presented asaisilo

Indexes:
I jobindex (=1,...n)
j  operation indexj€l,..,m)
k,k machine group typekf'=1,...m)
s,s Machine index belonging to a
specified groupgs'=1,...5x)
| order index for each machine

(1=1,2,..,1y

Parameters:

o jth operation of the job

P processing time ob; ; on machine
typek

=Y 1 if o;; is performed on machine
typek, O otherwise

S number of machine type

w Tardiness penalty of job

dd. due date of jold
WF weight ofhth objective function

distance between machine of

ksk's
groupk and maching’ of groupk’
C unit transportation cost for jab
N, batch size of jol
M very big number which can be

considered as sum of processing
times of all the operations
Variables:
S starting time of the, ;

sm, starting time of the operation
positioned on sth machine of
machine typé for the ordet
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yi?k 1 if 0; ; which needs to be operated
on machine typé is performed on
sth machine of typé&, O otherwise
riji 1 if 0; ; which needs to be operated
on machine typ& is performed on
sth machine of typé for orderl, O
otherwise
CT  completion time for job
T tardiness of jol

3-2-Mathematical mode!:
minimize  WF, > w,T, +WF,

I ‘ 1
*ZZI“;ZS:;ZC' Dksk‘s'yiij;k* yis,j+1,k' @

D Vi =ay i,k )

2 ik = Yo DiLk,s ®)

|

> rn<10k,s,l (4)

]

St 22 2 NF P s s; Ol j>1 )

k s |

smy —l+ZZNi * pijk* rijskl_lssmk,s,ﬁ Ok, sl >1 (6)
]

§ <@-r3)*M +smgy;0i, j.k,s)l (7)

SNy <(@-r5)*M +5;;0i, j,k,s)| (8)

CTzg+2>. > > N*py* e Oi ©)
k s |

CT —dd <T;0i (10)

i ={0.3 yj ={0} s,z Osmy 2 0 (12)

CT, =0T, 20,0 ,j k s/

Objective function consists of minimizing weighedns of two objectives: tardiness and total
travelling distance. Equation (2) ensures that egeration of each job can be assigned to just one
particular machine of the related machine type.dfiqu (3) denotes that when operation of one job
is assigned to any particular machine, this opamatan be positioned in any order of the machine.
Constraint set (4) guarantees that on each ordangfmachine of any type, we can assign one
machine at most. Constraint set (5) adjusts th#irggatime of operations which are positioned in
the processing route, in other words, it makes $heie successive operations of any machine are
performed after the preceding ones. Constrain(&eas similar to (5) and indicates that operations
with successive priority must wait for the compdetiof preceding ones. Constraints (7) and (8) are
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used to adjust the starting time of each operaifazach job and starting time of jobs on machines,
that is, if riji is equal to 1, then; ; andlth order ofsth machine of typ& must start simultaneously.
Constraint (9) restricts the completion time oflegab to be equal or greater than the completion
times of all the operations of that job. Constraet (10) shows the earliness and tardiness of each
job according to the completion time and due datihat job. Finally, constraint set (11) explains
the non-negativity conditions of the variables.

Regarding that the second part of the objectivetfan is non-linear, we defined a new variable

namedzf'js‘k o 1O eliminate the non-linearity of the model.

ss = yS %S (12)
Zl,j,k,j+1,k' = Yik " Y, J+1K

S s s . (13)
le,j K, j+1K yiJ?k yis.j+1k' +1=2 0,0 ) < N ks
2% le,]isyk,jﬂ,k' - yi?k - yis,j+1k' <O j<n (14)

By applying the changes mentioned above on thectige function, objective function will be
varied as follows:

minimizeWF, ) w T, +WF,

*Z Z Zk: Z kz Zci * Dksk's'* ZiS.’jS‘,k,j+Lk'
i ] S S

(15)

Also, Constraints (13) and (14) must be addedeartbdel.

4. Proposed GA approach for scheduling VCMs

VCM problem usually deals with two different issuggachine assignment and scheduling problem
of operations. The representation can be displagea kind of expanded job-list, which consists of
N x M genes, wherdl is the number of jobs arid is the number of machines

The objective function value of all chromosomes eateulated and ordered in descending way.

Fitness function chromosonids calculated by equation (16) whekd~ , OF and OF represent

fitness function forth chromosome, the worst objective function avadamnd objective function of
current chromosome respectively. The equation teddy 1 in order to make it possible for the
worst chromosome to be selected for the next ptipola

FF =OF,—OF +1 (16)

The evolution process of GA usually starts fromamdomly generated population. In each
generation, the fitness of each individual chrommesdn the population is assessed. The more
fitness function of an individual, the more charafebeing selected will be. New generation is
stochastically selected from the current populatenmd each individual's genome is modified by
means of mutation and crossover operator to formeva population. The new population is then
used in the next iteration of the algorithm. Thigiah population for the proposed GA algorithm is
randomly generated.
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In this paper, in order to perform a mutation opmEtatwo genes are selected randomly and then
their positions are replaced by each other.
There are different types of crossover operatoesl s GA such as one-point, two-point, uniform
and arithmetic ones. In this paper, a hybrid ofarm and two-point crossover have been utilized.
A number between 0 and 1 israndomly generated. Vitsevalue is more than 0.5, the uniform
crossover will be applied and when the value is lggn 0.5, the two-point cross over will be
considered.
Survival selection procedure is executed after geimgy the offspring. Size of the population is
fixed and will not alter during the procedure, #fere we should determine which individuals are
participating in the next generation. This decis®misually taken according to the fitness function
values. Solutions in the population are sorted ftbm best to the worst in accordance with their
performance on the objective function of the problén this paper for selecting the survivals, three
approaches are implemented: crossover operatoratimutoperator and elites (chromosomes
transferred to next generation without any chantieprder to generate better solutions, a local
search approach is performed on 50 percent ofdhegeneration.
Different terminations conditions can be applied @a0GA algorithm. For the proposed GA
algorithm, one of the following conditions causles algorithm to reach to its end:

1. Generating a specified number of generations.

2. No improvement is observed during a specified pkofbgenerations.

5. Proposed SA approach for scheduling VCMs

Representation of solutions is the same as theused in the GA algorithm. To create a new
neighborhood, two genes are selected and intereldangh each other.

Determination of the initial temperature is verypontant in accepting or rejecting the solutions.
The higher the temperature, the more significaatgtobability of accepting a worst move will be.
On the other hand, low degrees of temperature eethe acceptance probability of bad solutions
and increase the chance of remaining in a locatapt

Cooling schedule has a great impact on the sucokdbe SA optimization algorithm. The
parameters to be considered in defining a cooliogedule are the initial temperature, the
equilibrium state, a cooling function, and the fitemperature. Different methods to decrease the
temperature degree are arithmetical, linear, gedenédvgarithmic, very slow decrease and non-
monotonic. In this paper, we will use arithmetigathod with the constant value ©fequal to 0.8.

T =Tw~C (17)

To reach an equilibrium state at each temperatureymber of sufficient moves must be applied.
This algorithm requires to be speculated in a $jgectemperature degree after some iterations to
make a decision of continuing the annealing proaceskat degree or terminating the process and
stepping to the other degree. In most SA methodsymaber of specified replacements are taken
place in a temperature degree named epoch or p&rodssessing the equilibrium conditions.
Number of these replacement is shownNoywWe have employed following constraint to spe@ulat
equilibrium condition:
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(18)

@

Wheref _, f,

e

and ¢ stand for objective function average in last epémhall of the accepted

replacements, average of all amounts ghnd errors respectively.

We have considered two termination conditions. Tih& one is to reach to final temperature
degree. The second is to achieve all of the gesrakighborhoods or all of the accepted
replacements during algorithm running time.

6. Conclusion and Computational results

The developed mathematical model for solving theppsed problem is coded in GAMS/Cplex
22.5. Optimization software and GA and SA algorishare coded in C++ Borland 6.0 on a
computer with 4GB RAM, Intel Core2 Duo P7550 CPLB&GHz processor. Time limitation for
each generated problem is 3600 seconds. In reddl \®0rpercent of orders are of high importance,
60 percent are of mediocre importance and thearesof low importance orders. Considering this
issue, for 20 percent of jobs, the tardiness pgmaitonsidered equal to 4, for 60 percent of jgbs

2 and for the rest of them is 1. Due date tightriesstion is also regarded as one of the factors in
calculating the due date. In job shop literatur@pugs of 1.3, 1.5 and 1.6 are considered for this
factor. As this factor gets smaller, the probleradmees harder to be solved.

di:Ni*f*Zpij (19)
=

In equation (19)d; , N, ,f ,p, and n, are due date of joh batch size of job, due date tightness

factor, process time gf th operation of jobi and the number of operations belongs to fjob
respectively. Process routes of the problem arelomaty generated. Processing time of the
operation on machines corresponds to uniform Oistion with a lower bound 2 and upper bound
of 10. Batch size of each job belongs to uniforstrebution range between 5 and 40. Distances
between each pair of machines also correspond iforomdistribution with lower bound 10 and
upper bound 20. Unit transportation costs betweaoh epair of machines follow uniform
distribution with a lower bound of one and uppeut of 5. The weight of tardiness and total
travelling distance part of the objective functiare determined 0.95 and 0.05 respectively. The
problem is divided into two branches: small scald &rge scale. Small scale includes problems
with 4, 6, 8 and 10 jobs. Large scale problemsisbi$ 15, 20, 25 and 30 jobs. As it can be seen in
Table 3 and Table 7, four aspects have been brdanghtaccount in order to generate different
problems: scale of the problem, a number of mactyipes (M), a number of individual machines
that exist in each machine type and due date wgistfiactor. Considering these four aspects, 288
different problems were generated. Some of thentisiszl in Table 3 and Table 31, s2 ands3 are
representatives of number of machines in machipestyand stand respectively for {2}, {2,3} and
{3,4}. For example,s2 means that number of machines related to eachinsatype should be
randomly chosen between 2 or 3 machines. On accolinton-deterministic nature of GA
algorithms, we conducted the GA four times for foyes of the proposed problem to gain the
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parameters of the algorithms experimentally. Bysodering these results, the mutation, crossover
and reproduction (elite) values for small scalebpgms are %7, %80 and %13 respectively. For
large scale problems, the values are %10, %70 &@ e values of population size, number of
maximal generations and number of local search as lme seen in Table 1 are obtained
experimentally too. In order to prevent computagioiime increasing, local search is applied only
on 50 percent of the population.

Parameters of SA are defined in two phases. Inepbas, in order to obtain the best combination
for e andN,,, the parameters of Table 2 were considered. Is¢bend phase, through values gained
from the first phase foe andN,, we defined the Initial temperature, final tempera and
Boltzmann constant for the problem. We conducteduhid of proposed algorithms to obtain the
best combination foe and N,. The results of phase one showed that for smalesthe best
combination is 0.008 and 3 respectively. For laagale problems, the values were set as 0.003 and
15. The result of phase two determined values dfaintemperature, final temperature and
Boltzmann constant equal to 50,1 and 1 for smallesproblems and 100, 1 and 1 for large scale
ones. The results of this test can be seen in Table

We can observe that average solution time increasélse number of workstations intensifies. SA
is better than GA in the point of average error anthber of optimal solutions especially in large
scaled ones. Both GA and SA excel GAMS in the gigemputational time limitation. Decreased
computational time and low value of the errors desti@ate the efficiency of proposed methods.

Tablel. Population, generation and local seararindtion

Number of Population Number of Local
jobs size Generation search
2,4,6,8 100 100 5
10,15 150 100 7
20 200 150 7
25,30 250 150 7

Table2. Phase one parameters

Initial temperature 100

Constant value of temperature function 0.8
Final temperature 1
Boltzmann constant 1
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Table3. Computational results for small scale potd for GAMS, SA and GA

Parameters GAMS SA GA Gap
Solution Time Solution Time Solution Time SA GA
N=4 M=3 sl f=13 142.85 1.357 142.85 3.8 142.85 1.94 0 0
N=4 M=3 s3 f=16 142.4 3.121 143.25 6.2 142.4 2.92 0.0059 0
N=6 M=3 sl =13 556.45 234 556.45 10.08 556.45 3.84 0 0
N=8 M=3 2 f=15 268.55 5 268.55 12.8 268.55 3.58 0 0
N=10 M=3 s3 f=16 375.85 10 386.65 13.9 378.45 5.1 0.0234 0.0069
N=4 M=5 s3 f=16 534.75 2.519 534.75 19.59 534.75 6.1 0 0
N=6 M=5 sl f=13 901.65 9.173 906.15 10.42 903.45 6.1 0.0049 0.0019
N=8 M=5 2 f=15 1123 162.21 1123 24.9 1148.3 7.9 0 0.0225
N=10 M=5 s3 f=16 1126 177 1158.3 33.44 1179.55 26 0.286 0.0475
N=4 M=7 s3 f=15 957.3 7.246 959.1 23.33 984.1 8.98 0.0018 0.0279
N=6 M=7 sl =16 2088.45 13.496 2088.45 6.62 2090.4 8.44 0 0.0009
N=8 M=7 2 =13 1462 243 1494.3 36.2 1561.6 12.08 0.0220 0.0681
N=10 M=7 s3 f=15 1947.3 481 1954.3 42.34 2076.65 25.21 0.0035 0.0664
N=4 M=10 s3 f=16 11825 45458 1194.9 4437 1217.45 22.15 0.0104 0.0295
N=6 M=10 sl f=13 1287.8 48.173 1289 11.56 1293.2 21.44 0.0009 0.0041
N=8 M=10 s2 =13 4356.05 1657 4475 7.135 4497 29.2 0.0273 0.0323
N=10 M=10 s3 f=16 3755.5 3600 3620.8 71.15 3879.25 52.1 0.0358 0.0329

We can see that in small scale problems, objeftinetion values in all problems are almost close
to each other. By comparing these solutions with dhes obtained from GAMS software, the
proposed model and the results of the proposeditiges can be properly validated.

Also, it can be seen that in most cases, the takentto achieve the optimal solution in the GA is
less than the SA. This makes the proposed GA tonbee effective in solving the small scale
problems (except for problems of size 15 and 16p Wesults of this test can be seen in Figure
Figures 1 and 2.

In order to check the equality of the values regliftom the proposed objective function in GA and
SA, we use the hypothesis testing. First, using dbgctive functions values, we checked the
normality of them at 95% confidence level accordiogthe results obtained. In small scale
problems, the p-value was less than 0.05 whiclcatds that the results are not normal.
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Probability Plot of RPD GA (SMATL)
MNormal
3
Mean 0.01611
StDev  0.02311
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A p-value  =0.005
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£ 50
& 401
30 4
20 -
10 -
5 -
b N | T T T T T
-0.050 -0.025 0.000 0.025 0.050 0.075
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Figurel. Normality test for the proposed GA in drsable problems
Probability Plot of RPD SA (SMATL)
MNormal
o9
MMean D.0DLEDL
Sihew 0.0D5355
95 - ™ 17
Al 4,507
o - P-valus =0.005
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-
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Figure2. Normality test for the proposed SA in dreedle problems

For this reason (having non-normality data), we mer-parametric statistical tests to check for
equality of means obtained from the use of the @sed algorithms. In this article, Kruskal-Wallis
non-parametric test was used. The results of éisisdan be seen in Figure 3. As it can be seen from
Figure 3, as well as the P=0.931, we can conclbde @quality of the values obtained from the
proposed algorithm cannot be rejected at the 958tidence level. The results of this test can be
seen in Tables 4, 5 and 6.
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Kruskal-Wallis Test: Response Objecti versus Factor Objective

Kruskal-Wallis Test on Response Objective Small

Facter

Objective

Small N Median Zwe Rank Z

1 17 1148 17.¢ 0.09

2 17 1123 17.4 -0.09

Overall 34 37.5

H=10.01L DF =1 P = 0.931

H=0.01 DF =1 P = 0.931 ({adjusted for ties)

Figure3. Results of Kruskal-Wallis test for smalale problems

Table4. Computational results for small scale (1)
Number of better ~ Average error of

Number of optimal Average computational time

solutions solution than methods comparec (seconds)
GAMS to GAMS
Mf‘;g‘é”e SA GA SA GA SA GA SA GA  GAMS
3 16 16 4 2 0.0926 0.0385 11.2078 5.9602 842.8940
5 16 8 3 1 0.0460 0.0217 17.9294 10.6741 787.989
7 11 3 3 1 0.0255 0.0570 22.6725 13.0051 661.913
10 0 0 8 6 0.0922 0.0654 34.1321 30.3644 1233.92
Table5. Computational results for small scale (2)
Method Objective function average Computational time average
value value
GA 1494.14 15
SA 1454.45 44.47
GAMS 1468.92 881.68

Table6. Computational results for small scale (3)

Percent of problems that Percent of problems that (1) Percent of problems that (1)

Mutual comparison of (1) excels (2) considering excels (2) considering  and (2) are equal considering

methods . L )
time objective value time
(1)SA, (2)GAMS 61.11 12.5 28.86
(1)GA, (2)GAMS 74.3 6.94 18.75
(1)SA, (2)GA 25 75.69 16.67

We can see that in the large scale problems, thgoped SA outperforms the GA in most cases.
Also, it can be seen that in most cases, the takentto reach optimal solution in proposed SA is
less than the proposed GA. This leads the prop8gedb be more efficient in solving the large
scale problems (except the sizes 5, 9, and 13)i@ensgy the objective function values, we
checked the normality of the mentioned data at @8%fidence level according to the results. In
large scale problems, the p-value was more thah @lich indicates that the results are normal.
For this reason (having normality data), we usewag analysis of variance (ANOVA) to examine
the equality of means obtained from the proposgdrahms. The results of this test can be seen in
Table 7.

According to Figures 4 and 5, the P-VALUE = 0.58& equality assumption of variances of the
data obtained by the proposed algorithms cannotjbeted at the 95% confidence level.
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Due to the Figure 6 and P = 0.628, we can condluaieequality assumption of the values resulted
from the proposed algorithms (in large scale pnmislecannot be rejected at a confidence level of

95%. The results of this test can be seen in Table 9.

Table7. Computational results for large scale proisl for SA and GA

Parameters SA GA G
Solution Time Solution Solution a
N=15 M=3 sl f=1.5 4080.75 18.3 4520.95 15.975 0.1078
N=20 M=3 s3 f=1.6 1869.5 30.68 2264.1 50.18 0.2110
N=25 M=3 sl =13 26995.1 3291 27907.75) 77.442 0.0338
N=30 M=3 2 f=15 36204.05| 39.64 36854.4 99.32 0.0179
N=15 M=3 s3 f=1.6 2321.05 39.21 2584.6 27.59 0.1135
N=20 M=5 s3 f=1.6 3145.15 49.96 3880.65 84.14 0.2338
N=25 M=5 sl f=1.3 29801.65 51.9 31297.45| 112.58 0.0501
N=30 M=5 2 f=15 29079.2 46.45 37583.4 115.32 0.2924
N=15 M=5 s3 =13 4642.05 39.2 6225.15 27.24 0.3410
N=20 M=7 s3 f=15 7093.5 47.25 8386.8 82,96 0.1823
N=25 M=7 sl f=1.3 31464.34] 57.99 37387.8 104.35 0.1882
N=30 M=7 2 f=1.5 27116.65 64.24 32174.94| 125.93 0.1865
N=15 M=7 s3 f=1.6 5075.55 58.54 5450.25 43.28 0.0738
N=20 M=10 s3 f=1.6 10518.15 68.44 13351.45] 124.91 0.2693
N=25 M=10 sl f=15 19535.35 76.14 22590.65 142.1 0.1563
N=30 M=10 2 f=1.5 48426.91| 84.94 59651.2 162.23 0.2317
Test for Equal Variances for Response Objective Large
F-Test

=3 Tast Statistic L.36

= 14 I P-Value 0.558

:E Lewene's Tast

% Test Statistic 045

E P-Value 0502

£ %7 L

10000 15000 20000 25000 20000
#2004y Bonferroni Confidence Intervals for StDevs

I+ | |

g

E= |

§ — [ |
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Response Orbjective Large

Figure 4. Variance equality test for the propodgdrithm in large scale problems
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Paired T-Test and Cl: GA Objective Large; SA Objective Large

Paired T for GA Objective Large — SR Objectiwve Large

¥ Mean 5StDev SE Mean

GA Objective Large 16 20757 17323 4331
3 Objective Large 16& 17961 143850 3712
Difference 16 273 3266 3186

953 CI for mean difference: (1056; 4537)
T-Test of mean difference = 0 (va not = 0): T-Value = 3.42 P-Value = 0.0

Figure5. T-test for the data obtained from the pega algorithms

One-way ANOVA: Response Objective Large versus Factor Objective Large

Socurce oF 55 M5 F B
Factoer Objectiwve Large b 62559355 62559355 0.24 0.628
Error 30 7909240071 260308002

Total 31 7871799424

5 = 18134 R-5g = 0.79% R-5g{adij) = 0.00%

Individual 95% CIs For Mean Based con Pooled StDev

Level N Mean StDev e e e e e fr o e
1 16 20757 17323 Iy e e e e i
F 16 17961 143350 [t e S e e I
Hemeasies e e e e e e[S eanries
10000 15000 20000 25000

Poocled StDey = 16134

Figure6. Results of ANOVA analysis for the dataadted from large scale problems

Table8. Computational results for large scale (1)

N : . . Percent of better Percent of better
Objective function Computational time . L . L
Method solutions considering solutions considering
average value average value . o .
time objective function value
GA 18690.68 87 3.48 25
SA 15378.22 49.96 96.52 75
Table9. Computational results for large scale (2)
percent of better ~ Average error  Average computational
solution obtained of GA time (seconds)
. by SA compared to compared to
Machine type GA SA GA SA
3 86.11 0.1070 30.94 55.32
5 100 0.2611 45.50 71.88
7 100 0.2873 51.99 77.46
10 100 0.2997 71.41 117.65
7. Conclusion

In this paper, we present a simulated annealing) (8% a genetic algorithm (GA) based on
heuristics for scheduling problem of jobs in viftgellular manufacturing systems. Computational
results show that both SA ad GA algorithms perf@moperly but SA is likely to turn out well in

finding better solutions in shorter times espegiail large scale problems. For future work, these
methods can be compared to some other layoutsasucéllular manufacturing or process layout in
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order to define the efficiency of the model. Instharticle, all of the variables have deterministic
values. Since in the real world, the nature ofalalgs is not deterministic, so the fuzzy approach
can be applied to the problem.
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