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Abstract 
In this paper, a task-space controller for electrically driven robot manipulators is developed using a 
robust control algorithm. The controller is designed using voltage control strategy. Based on the 
nominal model of the robotic arm, the desired signals for motor currents are calculated and then the 
voltage control law is proposed based on the current errors and motor nominal electrical model. 
Uncertainties such as parametric uncertainties, external disturbances and also imperfect 
transformation are compensated in the control law. The case study is a two-link robot manipulator 
equipped by permanent magnet DC motors. Simulation results verify the satisfactory performance 
of the proposed controller in reducing the tracking error and overcoming uncertainties. 
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1. Introduction 

Motion control of robot manipulators in the joint-space under uncertainties has been studied using 
various approaches, such as PID [1], feed-forward control [2], sliding-mode control [3], robust 
control [4-8], and neuro-fuzzy control [9-15]. The goal of control tasks is generally to move the tool 
center point (TCP) of the arm along a given path in the Cartesian coordinates (CC). That is, the 
desired trajectory of TCP is specified in CC, while the motions are actually obtained from the 
numerous actuators existing at the joints, which decide the required joint angles. However, despite 
of well behavior of the aforementioned strategies in joint-space, none of them can provide 
satisfactory tracking performances in workspace under the imperfect transformation from Cartesian 
to joint angles. Some of these reasons are as follow: 
(I) The robot’s kinematics and dynamics change when a manipulator picks up different tools of 
unknown length, or unknown gripping points [16]. Therefore, the desired joint angles, their 
velocities, and accelerations are not produced precisely in joint-space under the imperfect 
transformation from task-space to joint-space. 
(II) Tracking errors are appeared in task-space while actuators operate in joint-space. Thus, 
transformation of control space should be carried out to perform a control law [17]. As a fast result, 
the control inputs involve errors, if we use the imperfect transformation. 
(III) The produced tracking errors in workspace are not detectable and compensable appropriately 
due to lack of feedbacks from the end-effector. 
To deal with these problems, feedbacks from task-space are required to detect tracking error in CC. 
Based on this fact, the task-level controllers were then developed using assumption of perfect 
transformation in control spaces [18-20]. The considerable point is that, despite of efficiency, and 
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implement ability of task-level controller, the major problem in utilization of this type of controller 
is the existence of kinematic singularities. The task-level controllers may produce high joint torques 
while approaching to a singular configuration. Consequently, we are confronted by instability and 
large errors in the task-space [21]. 
Moreover, the control inputs involve errors if we use the imperfect transformation. Also, there is a 
problem that arises from task-space formulation of actuated robot manipulators including strong 
couplings between the joint motions, Jacobian matrix and its derivatives, as well as the inertia 
parameters of the payload carried by the manipulator end effectors. Therefore, designing a 
controller that solves the above problems has been the subject of many researches over the last 
decade.  
Recently, a number of approximate Jacobian controllers have been presented to cope with the 
uncertain robot kinematics and dynamics using adaptive control laws. The proposed controllers do 
not require the exact knowledge of the kinematics and Jacobian matrix [22-25]. However, they are 
unable to handle unstructured uncertainty in the transformation, which is a missing link in almost all 
the proposed approaches. Therefore, such a proper controller cannot be easily developed to 
implement robotic applications in workspace. To tackle this problem, three good robust control 
strategies have been proposed aiming to prevent nominal performance degradations in presence of 
both parametric and unstructured uncertainties [26-28].  
As a major point, common in almost all aforementioned strategies, previous approaches exclude the 
actuator dynamics, although, there is yet problem arises from adaptive control design as mentioned 
in [29-30]. In other words, extension of all the previously torque-based demonstrated control 
strategies is based on manipulator dynamics, and devoid of using actuator model in the controller 
structure and implementation. Thus, despite merit of the robust torque-based control laws from 
theoretical point of view, they might have some drawbacks from practical implementation point of 
view: 
-A torque-based control law cannot be given directly to the torque inputs of an electrical 
manipulator. Because physical control variables are not the torque vector applied to robot links but 
rather electrical signals to actuators.  
-Motors and drives dynamics are excluded in the torque-based control strategies, while the actuator 
dynamics are often a source of uncertainty, due e.g. to calibration errors, or parameter variation 
from overheating and changes in environment temperature [31].  
-The control problem becomes hypersensitive when faster trajectories (motions along specified 
paths at high speeds) are demanded. The main reason of this sensitivity refers to dynamic problems 
arising from high velocities. Therefore, robot’s performance degrades quickly as speed increases. 
In this paper, a robust control approach is developed to control actuated robotic arms under the 
imperfect transformation of control space with the presence of uncertainties including both 
parametric uncertainties and un-modeled dynamics in motor and robot dynamics. This is the main 
advantage, which makes this control approach superior to others.  
The rest of this paper is organized as follows. Section 2 discusses about robot and actuator 
dynamics. Section 3 presents a robust joint-space controller under uncertainties and stability of the 
closed-loop system is then established using Lyapunov analysis. Section 4 develops a robust control 
approach for tracking control of robot manipulators in the task-space. The numerical results are 
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discussed in section 5 to show the effectiveness of the proposed control scheme. Finally, we give 
our concluding remarks in section 6. In what follows, we shall use the following notation. We 

denote byx the Euclidean norm of a vector nx ∈ℜ .    

We say that ( ) :[0, ] nx T⋅ → ℜ is in 2[0, ]L T if
2

0

T

x dt < ∞∫ , ( )x ⋅ is in [0, )L∞ ∞ if x < ∞ for all

[0, )t ∈ ∞ .   
 
2. Problem Formulation 
Let us consider the following well-known differential equations of motion, which describes the 
electrical subsystem behavior of n permanent magnet DC motors driving n degrees of freedom 
robot. These equations are: 

b

di dq
L Ri k u

dt dt
+ + =                     (1) 

where n nL ×∈ℜ is a constant diagonal matrix of electrical inductance, n nR ×∈ℜ is diagonal matrix of 

armature resistances, [ / / sec]n n
bk volt rad×∈ℜ is a diagonal  constant matrix for the back-emf 

effects, [ ]nu volt∈ℜ is the control input voltage applied for the joint actuators, and [ ]ni A∈ℜ is the 

vector of motor armature currents. In addition, we assume that the joint-space dynamics of an n-link 
rigid-body robot manipulator can be described by the following second order nonlinear vector 
differential equation: 

( ) ( , ) ( ) dD q q C q q q g q T Hi+ + + =&& & &                          (2) 

Where nq ∈ℜ denotes a vector of generalized joint variables, ( )n nD q ×∈ℜ is the inertia matrix of 

manipulator which is symmetric and positive definite. ( , ) nC q q q ∈ℜ& & is a vector function containing 

Coriolis and centrifugal forces, ( ) ng q ∈ℜ is a vector function containing  gravitational forces. 
n

dT ∈ℜ is a vector, which includes both external disturbances and un-modeled dynamics, and 
n nH ×∈ℜ is an invertible constant diagonal matrix characterizing the electro-mechanical conversion 

between the current vector and  the torque vector. Equation (2) can be represented as 

( ) ( , ) ( )i i i diD q q C q q q g q T i+ + + =&& & &                      (3) 

Where 1 1 1,  ,  i i iD H D C H C g H g− − −= = = and 1
di dT H T−= . According to [32], the robot 

dynamics described above has the following fundamental properties, which can be exploited to 
facilitate the control system design: 
 
Property 1: The inertia matrix ( )D q is symmetric, positive definite and uniformly bounded for all

nq ∈ℜ . That means, there exist positive constants1µ and 2µ , 1 2µ µ≤ such that 
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1 2( )                 , n
n nI D q I qµ µ≤ ≤ ∀ ∈ℜ       (4) 

Property 2: The matrix ( ) 2 ( , )D q C q q−& & is skew-symmetric. That is 

( ) 2 ( , )      , , ,T T ny D q y y C q q y y q q= ∀ ∈ℜ& & &        (5) 

Property 3: The robot dynamics can be linearly parameterized as the multiplication of a known 

regress or matrix ( , , ) n mW q q q ×∈ℜ& && with a parameter vector mP ∈ℜ , i.e.  

( ) ( , ) ( ) ( , , )D q q C q q q g q W q q q P+ + =&& & & & &&        (6) 

Property 4: For all revolute manipulators, the norm of ( , ),  ( )C q q g q& , and dT satisfies the 

following inequalities 

( , )   ,   ( )   ,   c g d tC q q q g q Tζ ζ ζ≤ ≤ ≤& &          (7) 

Where , c gζ ζ and tζ are positive real constants. 

 

In the most of robotic applications, a desired path is specified for the end-effector in the task-space. 

Let us nX ∈ℜ to be a task-space vector, representing the position and orientation of the robot end-
effector relative to a fixed user defined reference frame. Then, the forward kinematic and 
differential kinematic transformation between the robot links coordinates and the end-effector 
coordinates can be written as   

( )X h q=  (8) 

( )X J q q=& & (9) 

Where : n nh ℜ → ℜ is smooth and ( ) n nJ q ×∈ℜ is the so called analytical Jacobian matrix. The robot 

Jacobian describes a map from velocities in joint-space to velocities in operational space. 
 
3. Robust Joint-Space Control  
In this section, we design a robust control for electrically driven robot by applying the recursive 
procedure. It follows from (1) and (3) that, the overall system of actuated robot manipulator can be 
viewed as two-cascaded dynamical system, if i is considered as the input signal to robot dynamics 
of rigid body. One consequence of this definition is that the rigid-link manipulator input i cannot be 
commanded directly, and instead it must be realized as the output of the actuator dynamics through 
proper specification of the actuator control inputu . Hence, in order to control the robot manipulator 
to track the desired trajectory, first a robust control scheme is designed to generate the fictitious 

control input di required to ensure that the system (3) evolves as desired. The next control objective 

is, naturally, to generate a suitable control voltageu so that the motor current i can follow the 

desired current commanddi , and thus q will follow the desired trajectorydq . Based on this 
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observation, a recursive control scheme is developed. By the last definitions, the first attempt is to 
define a switching rule, in the joint-space. 

( ) ( )q d dS q q q qα= − + −& &  (10) 

Where qS is the switching rule,α is a diagonal positive definite gain matrix and n
dq ∈ℜ is a desired 

trajectory in joint-space. Let us define a vector nr ∈ℜ in the form of  

( )d dr q q qα= + −&  (11) 

Thus 

qS r q= − &  (12) 

Now, the problem is to design a desired current trajectory di so that a robust inner-controller u can 

be constructed to have di i→ which further implies convergence of the output error as desired. To 

solve this problem, we define the desired current di as 

ˆˆ ˆd i i i q rli D r C r g Sλ τ= + + + +&  (13) 

where ˆˆ ,  i iD C and ˆig are respectively estimates of ,  i iD C and ig . The parameterλ is a positive 

definite matrix and control input rlτ is considered for canceling both parametric uncertainties and 

unstructured uncertainties in mechanical subsystem of robot manipulator. Substituting (13) into (1), 
rearranging with some manipulation leads to dynamic of the output tracking loop as  

( , , , )i q di q i q rl iD S W q q r r P T S C S eλ τ= + − − − −& %& &  (14) 

Where i de i i= − is the current error, P% is a vector of parametric errors defined as ˆP P P= −% , P̂

denotes an estimation of P and from (6) 

( ) ( ) ( )ˆˆ ˆ( , , , )W q q r r P D D r C C r g g= − + − + −%& & &  (15) 

By the last result, the design procedure is now to design a control inputu , to realize the perfect 
current vector in (13), such that, the current error can either converges to zero, or at least it is 
bounded by a constant. It returns to this fact that, a constant-bounded disturbance will not destroy 

the stability result under robust control di which is a result of uniform ultimate boundedness of 

tracking error using Lyapunov based theory of guaranteed stability of uncertain systems [32]. 
Toward this end, we may construct the control input in the form of 

ˆˆ ˆd
i rmbK

di dq
u L Ri e

dt dt
γ τ= + + − +  (16) 
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Where the gain matrixγ is selected to be positive definite and control input rmτ is considered for 

canceling both parametric uncertainties and unstructured uncertainties in the motor dynamic 
equations. Substituting (16) in (1), the dynamics for the current tracking loop becomes 

i
i i rm

de
L e P

dt
γ τ+ = − Φ +%  (17) 

ˆˆ ˆ[ ]i b bK KP L L R R= − − −%
 

(18) 

[ ]
T

T T Tddi
i q

dt
Φ = &

 

(19) 

Where and ˆˆ ˆ,  ,  bKR L are estimates of,  ,  bR L K , respectively.  

 
Stability Proof:  
The asymptotic stability of the entire control system is analyzed based on lyapunov stability theory 
and using Barbalat's lemma. First, an important lemma is introduced and then the closed-loop 
stability is proved. 
 
Lemma 1: Suppose that a symmetric matrix Q is partitioned as: 

11 12

21 22

Q Q
Q

Q Q

 
=  
 

 (20) 

where 11Q and 22Q are square. Then, the matrix Q is positive definite if and only if 11Q is positive 

definite and 1
22 12 11 12

TQ Q Q Q−> .  

 
Proof: Consider the Lyapunov function candidate 

1 1
( ) 0

2 2
T T
q i q i iV S D q S e Le= + >  (21) 

The differentiation of V is 

1
( ) ( )

2
T T T T
q i q q i q i iV S D q S S D q S e Le= + +&& & &  (22) 

From equations (14) and (17), and the fact that ( ) 2 ( , )i iD q C q q−& & is skew-symmetric, we have 

( ) ( )( , , , )qT T T T
q i i rm q di rl

i

S
V S e Q e p S W q q r r P T

e
τ τ 

 = − + − Φ + + + −  
 

& %% & &

 

(23) 

With 
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21

22

I
Q

I

λ
γ

 
=  

 
 (24) 

Based on lemma 1, for matrix Q to be a positive definite matrix, the requirement is 

11

4
γ λ−>  (25) 

Condition (25) is met by choosing appropriate diagonal matrices of controller gainsλ andγ . Now, 

due to establish 0V ≤& , it is sufficient that  

( ) ( )( , , , ) 0T T
i rm q di rle p S W q q r r P Tτ τ− Φ + + + − ≤%% & &  (26) 

To satisfy (26), the robust control inputs are then given by 

( )      for    0q
rl rl q

q

S
t S

S
τ δ= ≠  (27) 

( )   for    0i
rm rm i

i

e
t e

e
τ δ= − ≠ (28) 

where ( )rl tδ and ( )rm tδ are positive scalar functions of time, namely a bounding function to show 

the upper bound of uncertainties, obtained from  

( , , , ) ( ) ( )   ,    ( )di rl i rmW q q r r P T t t P tδ δ+ ≤ Φ ≤% %& &  (29) 

Up to now, we have proved that qS and ie are uniformly bounded, i.e. ,q iS e L∞∈ . From the 

computation 

0
0 0

qT T
q i

i

S
S e Q dt Vdt V V

e

∞ ∞

∞
 

  ≤ − = − < ∞  
 

∫ ∫ &  (30) 

We have 2,  q iS e L∈ . Therefore, boundedness of qS& and ie& can be achieved by observing (14) and 

(17), since all of terms are bounded. Therefore, the control system has asymptotic stability and 
convergence of tracking error can be concluded by Barbalat's Lemma. This completes the proof of 
the closed-loop system stability. 
 
Remark: It must be emphasized that, the robust control strategy, not designed at the torque-based 
of the rigid body often requires a bounding function on the time derivative of some robust torque 
control. Thus, it is best that the outer robust control be differentiable and it's time derivative 
bounded by a function of reasonable magnitude. Thus, in the outer robust control phase, we may 
make a modification that redefines the control (27) to be 
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1 1
( )

v

rl rlv v
t

µ µ
τ δ

µ ε+ +
= −

+
 (31) 

where ( )rl it eµ δ� . The choice of design parameters ,  v ε and how to well design a robust controller 

are extensive discussions, which can be founded in [32]. 
 

4. Robust Task-Space Control 
Robust control approaches have been extensively developed to control robot manipulators in joint-
space. It is obvious that, even, though they can present perfect tracking control in joint-space, they 
cannot provide satisfactory performances in CC under imperfect transformation of control space. In 
addition, extension of many task-space control approaches has been by the assumption of perfect 
transformation, which is not real with presence of uncertainties. To cope with this problem, a 
hybrid-switching rule is proposed as follows: 

1 1ˆ ˆˆ ˆ( )( ) ( )x d d d dS J q X X J q X qβ − −= − + −& &  (32) 

where 0β > determines the behavior of the error dynamics, 1ˆ ˆ( )dJ q− is the inverse of imperfect 

Jacobian matrix, n
dX ∈ℜ is the desired trajectory in CC and ˆ n

dq ∈ℜ is a transformed desired 

trajectory to joint-space which is calculated by imperfect inverse kinematics as 

ˆˆ ( )d dq invh X=  (33) 

Also from (8) 

1ˆˆ ˆ( )d d dq J q X−=& &  (34) 

As can be seen from (32), the control system switches on 0xS = to achieve a zero tracking error 

vector such that X converges to dX as time increases to infinity. Let us define a vector ˆ nr ∈ℜ in 

joint-space of the form 

( )1ˆˆ ˆ( ) ( )d d dr J q X X Xβ−= + −&  (35) 

Then (32) can be rewritten as 

ˆxS r q= − &  (36) 

Moreover, the time derivative of r̂ is 

( ) ( )1 1ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( )d d d d d dr J q X X X J q X X Xβ β− −= − + + − +&& & & & &&  (37) 

The time derivative of xS is also obtained from (36) 

ˆxS r q= −&& &&  (38) 
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Now we design a desired current 

ˆˆ ˆ ˆ ˆd i i i x rli D r C r g Sλ τ= + + + +&  (39) 

With the parameters, defined as the same as before. Substituting (39) into (1), rearranging, and 
some mathematical calculations one obtains the dynamic of the output-tracking loop as  

ˆ ˆ( , , , )i x di x i x rl iD S W q q r r P T S C S eλ τ= + − − − −&& %&  (40) 

The remaining task here is to adjust the control inputu in (1), exactly as the same as those defined 
by (16), to ensure convergence of the actual current to the perfect one. 
 
Stability Proof: 
Letting a candidate Lyapunov function be defined as 

1 1
( ) 0

2 2
T T
x i x i iV S D q S e Le= + >  (41) 

Through a similar calculation of previous section, the differentiation of V is 

( ) ( )ˆ ˆ( , , , )xT T T T
x i i rm x di rl

i

S
V S e Q e p S W q q r r P T

e
τ τ 

 = − + − Φ + + + −  
 

&& %% &

 

(42) 

whereQ is positive definite due to the suitable selection of gain matricesλ andγ . Again, in order to 

establish asymptotic stability, it is sufficient that  

( ) ( )ˆ ˆ( , , , ) 0T T
i rm x di rle p S W q q r r P Tτ τ− Φ + + + − ≤& %% &  (43) 

The robust control inputs are then given by 

( )      for   0x
rl rl x

x

S
t S

S
τ δ= ≠  (44) 

( )   for    0i
rm rm i

i

e
t e

e
τ δ= − ≠ (45) 

where ( )rl tδ and ( )rm tδ are given by (29). These conditions together with Barbalat's lemma 

complete the proof of the closed-loop system stability. 
 
5. Computer Simulation 
In this section, we present the simulation results for the proposed control scheme. The simulation 
task is carried out based on a two degree-of-freedom planer robot driven by dc motors. The 
dynamic model of the robot system can be described in the form of Equation (2) as 
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Where q1 and q2 are the angle of joints 1 and 2, m1 and m2 are the mass of links 1 and 2 
respectively, l1 and l2 are the length of links 1 and 2, Ii is the link's moment of inertia given in center 
of mass, lci is the distance between the center of mass of link and the ith joint, and g is the gravity 
acceleration. The manipulator dynamic parameters are defined as l1=l2=0.75m, lc1=lc2=0.375m, 
m1=m2=0.5kg and I1=I2=0.0234; Also, the exact-actuator dynamic model parameters are selected as 
R=diag(1,1), Kb=diag(1,1) and L=diag(0.025, 0.025) and H=diag (10,10). In order to observe the 
effect of the actuator dynamics, the endpoint is required to track a rapidly-varying task space 
trajectory, characterized by 0.2m radius circle centered at (0.8m, 1.0m) in 2 seconds. The forward 
kinematic equation is given by 

1 1 2 1 2

1 1 2 1 2

( ) ( )

( ) ( )

X l cos q l cos q q

Y l sin q l sin q q

= + +
= + +

 (47) 

The manipulator Jacobian matrix( )J q mapping from task-space to joint-space is given as 

1 1 2 1 2 2 1 2

1 1 2 1 2 2 1 2

( ) ( ) ( )
( )

( ) ( ) ( )

l sin q l sin q q l sin q q
J q

l cos q l cos q q l cos q q

− − + − + 
=  + + + 

 (48) 

The link's length is estimated by a gain of 1.1 from real values defined as before. The initial 
tracking error is considered zero in all simulations. The external disturbances and unstructured 
uncertainties are assumed as 

[ ]T
( ) 40sin(2 ) 10    .dT t t N mπ=  (49) 

At first, to clarify the significance of the actuator dynamics in the closed-loop stability, we applied a 
torque-based robust control investigated in [28] as 

ˆˆ ˆ ˆ ˆ x rlu Dr Cr g Sλ τ= + + + +&  (50) 

With 100β = , 10λ = and no knowledge of the manipulator dynamic. As shown in Figure 1, the 

end-point trajectory converges smoothly to the desired trajectory. Now, if a torque-based robust 
controller is applied to the same electrically driven robot with the same set of controller parameters, 

( ) ( ) ( )

( ) ( )

( )

2
2 1 2 2 1 2 211 12

2
21 22 2 1 2 2 1

1 1 2 1 1 2 2 1 2

2 2 1 2

2 2 2
11 2 1 2 1 2 2 1 1 1 2

21 12

2 ( ) 0.5
  ,  ,

( )

( ) ( )

( )

2 ( )

c

c

c c

c

c c c

m l l sin q q q qd d
D q C q q q

d d m l l sin q q

m l m l gcos q m l gcos q q
g q

m l gcos q q

d m l l l l cos q m l I I

d d m

 − + 
= =   

    

 + + + 
=  + 

= + + + + +

= =

& & &
& &

&

2
2 2 2 1 2 2 2

2
22 2 2 2

( )c c

c

l m l l cos q I

d m l I

+ +

= +
 

(46) 
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some modifications are needed so that the robot and the controller would be compatible. The 
purpose of  

 
Figuer1. The end-effector position in the task-space 

 
Using the same set of parameters is to have an effective comparison. Let us introduce a conversion 

matrixKτ  which satisfies ( ) ( ) ( )K u Hiτ τ∞ = ∞ = ∞ so that the controller (50) becomes in the 

voltage-level 

( )1 ˆˆ ˆ ˆ ˆ( ) x rlu K Dr Cr g Sτ λ τ−∞ = + + + +&  (51) 

As can be seen from Figure 2, the controller designed in torque-based is not able to give acceptable 
performance under the conditions that the actuator dynamics is important such as the fast motion 
trajectory simulated here. As a fast result, consideration of the actuator dynamics is very important 
when faster trajectory is required. Now, to clarify the significance of the proposed controller two 
simulation set will be investigated. 

 
Figure2. The end-effector position in the task-space 
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Simulation 1: The joint-space control given by (13) and (16) is simulated to track a circle in CC. 

The most conservative choices of ˆˆ ,  i iD C and ˆig are selected here equal to zero. Namely, assume no 

knowledge about the system. We set the controller with 120,  6α γ= = and 4λ = . Figure 3 shows the 

tracking performance of the robot endpoint and its desired trajectory in the CC. The norm of 
tracking error in CC indicates a maximum value of 135mm, while the norm of joint errors is 
negligible with a maximum value of 1.05mm as shown in Figures 4 and 5 respectively. Therefore, 
despite of good tracking performance of the robust joint-space control strategies; they cannot 
provide satisfactory performance in CC under imperfect transformation of control space. The efforts 
to the two joints are given in Figure 6.As shown in this Figure, the control signals are bounded and 
after a short transient state, motor voltages are smooth. The performance in the current tracking 
loop is quite good as shown in Figure 7. According to this Figure, there is no sudden change in 
currents and motor currents are bounded. To show the role of the robust control input, we repeated 

the previous simulation in absence ofrlτ , as shown in Figure 8. As shown in this Figure, the 

performance of the joint-space control strategies is degraded by the imperfect transformation which 
clarifies the considerable influence of the proposed robust control method. 
 

 
Figuer3. The end-effector position in the task-space 
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Figure4. Tracking error in task-space 

 

 
Figuer5. Tracking error in joint-space 

 

 
Figure6. The control efforts for both joints 
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Figure7. Tracking in current loop 

 

 
Figure8. The end-effector position in absence ofrlτ 

 

Simulation 2: The task-space control given by (16) and (39) is simulated where the parameters are 
as the same as before but 100β = . The control system tracks well the circle as shown in Figure 9. 

As can be seen from Figure 10, end-effector positions converge nicely to the desired value in task-
space. Furthermore, the technical limits such as motor voltages and performance in the current 
tracking loop are illustrated in Figures11 and 12, respectively. As shown in these Figures, motors’ 
voltages and currents are bounded and the controller can be implemented practically due to these 
reasonable signals. Moreover, it seems that the performance of the current control loop is acceptable 
and current tracking errors are very small. The simulation results clearly show the effectiveness of 
the proposed control scheme to robustly stabilize the system, while achieving robust performance 
subjects to uncertainties in kinematic equations. 
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Figure9. The end-effector position in the task space 

 

 
Figure10. Tracking error in task-space 

 

 
Figure11. The control efforts for both joints 
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Figure12. Tracking in current loop 

 
6. Conclusion 
A voltage-based controller for robust task-space control of robot manipulators has been developed 
in this paper. The controller is designed using nominal models of the robot manipulator and motors. 
Uncertainties originated from the mismatch between nominal and actual models have been 
compensated using feedbacks from both joint-space and task-space via a robust control approach. 
The desired signals for motor currents have been obtained using nominal model of the manipulator 
and then the voltage control law is proposed based on the current errors and motor nominal 
electrical model. It has been shown that the closed-loop system is asymptotically stable based on 
Lyapunov stability analysis. Simulation results show that the performance of the proposed 
controller is comparable to that of torque-based controllers.  
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