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Abstract 
Actuators of robot operate in the joint-space while the end-effect or of robot is controlled in the 
task-space. Therefore, designing a control system for a robotic system in the task-space requires the 
jacobian matrix information for transforming joint-space to task-space, which suffers from 
uncertainties. This paper deals with the robust task-space control of electrically driven robot 
manipulators. In conventional robust control approaches, the uncertainty upper bound is required to 
design the control law. This type of controller design is conservative that may increase the 
amplitude of the control signal and damage the system. Moreover, calculation of this bound requires 
some feedbacks of the system states which may be expensive. The novelty of this paper is 
addressing a robust control law in which the lumped uncertainty is modeled by a differential 
equation. The control design is simple, robust against uncertainties, and less computational. 
Simulation results verify the effectiveness of the proposed control approach applied on a two-link 
robot manipulator driven by geared permanent magnet DC motors. 
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1 Introduction 
In the last few decades, task space adaptive/robust controls of robot manipulators have been the 
focus of widespread researches [1–3]. The reason for the importance of robust and adaptive control 
may be their efficiency in overcoming the uncertainty originated from mismatch between the 
nominal and actual models. External disturbances, un-modeled dynamics and parametric 
uncertainty are the main sources of uncertainty in control engineering which can seriously degrade 
the controller performance.  
In earlier methods of robust control [4-5], the controller is designed based on the nominal model of 
the system. Then, a robustifying term is added to the control law to compensate the uncertainty and 
the value of this term is determined using a Lyapunov stability analysis. Variable structure control 
(VSC ) is such a controller type. In these approaches, the uncertainty upper bound is required to the 
controller design and guarantee the system stability. Usually, this bound is a function of the system 
states and the upper bound of external disturbance. Thus, all the required feedbacks should be 
available and the upper bounds of parametric uncertainty and external disturbances should be 
known in advance. In addition to these, there is yet another problem. Variable structure control is a 
powerful strategy against external disturbances, quickly varying parameters and un-modeled 
dynamics. However, a conservative design may be obtain, since the VSC scheme should be design 
to treat the worst situation of uncertainties [6].  
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In the case of adaptive control, linear parameterization of the robotic motion equations is necessary 
[1-5]. Therefore, the manipulator motion equation should be completely modeled in order to 
identify the regressor matrices. Furthermore, it requires persistent excitation condition of the 
reference input signal due to the convergence of the parameter’s vector, and slow behavior of the 
dynamic system. This problem becomes hypersensitive especially for higher degree of freedom 
(DOF) robot manipulators. Furthermore, they are unable to handle unstructured uncertainty and 
external disturbances adequately [7].  
Alternatively, fuzzy/neural network based control methods are also known as effective and robust 
approaches for uncertain systems [8-12]. Neural networks provide powerful abilities such as 
adaptive learning, parallelism, fault tolerance, and generalization to the fuzzy controller. However, 
it is very difficult to guarantee the stability and robustness of neural network control systems. In 
addition, some fuzzy/neural networks methods require predefined and fixed fuzzy rules or NN 
structure, which reduce the flexibility of the controller [13].  
Recently, some regressor-free adaptive approaches have been presented [14-21] in which 
uncertainties have been approximated using the Fourier series. On the basis of Lyapunov stability, 
some adaptation laws are derived for adjustment of the Fourier series coefficients. According to 
[15], other orthogonal functions such as Legendre and lagure polynomials can also approximate 
continuous time functions with an arbitrary accuracy.  
The rest of this paper is organized as follows. In section 2 we recall nonlinear dynamic description 
of the robotic manipulator actuated by permanent magnet DC motor. The overall control structure 
of the proposed controller will be studied in section 3 and the closed-loop system stability is then 
established. In section 4 a simulation study will be presented to show the effectiveness of the 
proposed control approach. Finally, concluding remarks are given in section 5. 
 
2 Mathematical Models 
The dynamic equations of the rigid-link electrically driven robot manipulator with n degrees of 
freedom can be written as follows 

( ) ( , ) ( ) lD q q C q q q g q τ+ + =&& & &  (1) 

1 1 1 1 1( ) ( )m m m b m luRK J r q RK B K r q t RK rτ− − − − −+ + = −&& &  (2) 

where nq ∈ ℜ is the vector of join positions,( ) n nD q ×∈ ℜ is the symmetric positive definite inertia 

matrix, ( , ) nC q q q ∈ ℜ& & is the vector of Coriolis and centrifugal torques,( ) ng q ∈ ℜ denotes the 

gravitational torque vector, n
lτ ∈ℜ is the vector of load torques applied on motor shaft, n nR ×∈ℜ is 

the actuator resistance matrix, n n
mK ×∈ℜ is the motor torque constant matrix, n n

mJ ×∈ℜ is a 

diagonal matrix of the lumped actuator rotor inertia, n nB ×∈ℜ denotes a diagonal matrix of the 

lumped actuator damping coefficients, n n
bK ×∈ℜ is the matrix characterizing the back EMF 

constants of the actuator,( ) nu t ∈ ℜ denotes the vector of armature voltages, andr is ann n×
transmission matrix given as follows 
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q rθ= &&  (3) 

With nθ ∈ℜ& denoting the vector of motor angular velocity. Combining equations (1) and (2) yields 
the following overall dynamic of electrically driven robot  

( ) ( , ) ( )D q q C q q u t+ =&& &  (4) 

Where 

1 1

1 1 1 1

( ) ( ( ))

( , ) ( ( ( , )) ) ( ( ) ( ) ( ))

m m

m b m l

D q RK J r rD q

C q q RK Br rC q q K r q RK r g q F q T t

− −

− − − −

= +

= + + + + +& & & &
 (5) 

 
2.1 Kinematic analysis 
With respect to n-joint coordinatesq , and m task coordinatesh , the kinematics of the manipulator 

can be described with the following equations [22]: 

( )h qφ=  (6) 

( )h J q q=& &
 (7) 

Whereφ is an m-dimensional vector function representing direct kinematics, ( ) m nJ q ×∈ℜ is the 

Jacobian matrix from joint space to task space. With this in mind, the robotic equation (4) can be 
represented in task space coordinates based on the following relationship: 

1 1( ) ( ( ) ( ) )q J q h J q J q h− −= −&& &&&&  (8) 

Substituting (8) into (4) yields 

( ) ( , ) ( )M h h H h h v t+ =&& &
 (9) 

Where 

( )
1

1 1)

( ) ( ) ( ) ( )

( , ) ( ( ) ( , ) ( ) ( ) ( ) ( ) ( ) ( )

T

T T

M h J q D q J q

H h h J q C q q D q J q J q J q h J q G q

− −

− − − −

=
= − +& &&&

 (10) 

And ( ) ( ) ( )Tv t J q u t−= represent the control input in the task-space. Please note that in this paper we 

assume thatm n= .  
 
3 Control Design 
Concerning the former, a robust task-space control strategy is developed. Suppose that , ( )q kM h  and 

, ( , )q kH h h&  represent the known terms of ( )M h  and ( , )H h h& , respectively. Furthermore, , ( )q uM h  and 

, ( , )q uH h h&  represent the unknown terms of ( )M h  and ( , )H h h& , respectively. With this in mind, the 

inner nonlinear control law is proposed as follows: 
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, ,( ) ( ) ( ) ( , )q k q kv t M h v t H h h′= + &  (11) 

Substituting (11) into (9) yields 

( ) ( , , ( ))h v t h h v tη′ ′= +&& &  (12) 

Where 

1 1
, ,( , , ( )) ( ( ) ( ) ) ( ) ( )( ( , ) ( , ))q k q kh h v t M h M h I v t M h H h h H h hη − −′ ′= − + −& & &  (13) 

Represents the lumped uncertainty, and I  denotes the identity matrix. Equation (12) can be 
stabilized using the following linear control law 

0 1 0( )v t a V a h a h′ = − −&  (14) 

By substituting (14) in to (12) we have 

1 0 0 ( , , ( ))Vh a h a h a h h v tη ′+ + = +&& & &  (15) 

Now, we design an algorithm to adjust the control inputV  such that the task-space tracking error is 
reduced in the presence of uncertainties. To that end, a desired closed-loop differential equation is 
defined as 

1 0 0d d d dh a h a h a V+ + =&& &  (16) 

Where dV  and dh  are desired path for the end-effector and desired output in the task space, 

respectively. As a result, using (16), the control gains can be selected in a more systematic manner. 
Once the motion specification is given in terms of the desired trajectorydV in the task space, then the 

motion control objective in operational space is to achieve 

lim ( ) 0
t

tξ
→∞

=  (17) 

Where 

( ) ( ) ( )dt h t h tξ = −  (18) 

Denotes the task space position error. Now, the system error dynamics can be obtained by deducing 
(16) from (15) as below 

1 0 0( ) ( ) ( ) ( , , ( ))t a t a t a V h h v tξ ξ ξ η′ ′+ + = + &&& &  (19) 

Where 

( ) ( ) ( )dV t V t V t′ = −  (20) 

The linear differential equation (19) can be represented as the following state-space form 

( ) ( ) ( , , ( )))Vx t Ax t B h h v t′ ′= + +∆ &&  (21) 
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( ) ( )y t Cx t=  (22) 

Where [ ( ) ( )]T T Tx t tξ ξ= & indicates the state vector, 

0 1 0

0 0
 ,     ,     C=[ 0]

I
A B I

a a a

   
= =   − −     

(23) 

And 
0

( , , ( )))
( , , ( )))

h h v t
h h v tη

 ′∆ =  ′ 

&
&

represents the lumped uncertainty injected to the system. Three 

assumptions may be summarized as follows: 
 
Assumption 1. The manipulator is operating away from any singularity. 
Assumption 2. The desired reference trajectory dV is assumed to be uniformly continuous, and has 
bounded and uniformly continuous derivatives up to a necessary order. 
Assumption 3.If ( , , ( )))h h v t′∆ & represents uncertainties that include inertia, coriolis/centrifugal 

forces, gravity force and kinematic uncertainties, ( , , ( )))h h v t T′∆ ∈& , whereT is compact set. 
 
Under these assumptions, and to determine the influence of inputV ′ on the tracking error, (21) and 
(22) are differentiated p–times to obtain 

( ) ( ) ( ) ( )t A t B t tϑ δ℘ = ℘ + +&  (24) 

( ) ( )

1
( ) ( )

p
p p j

j
j

y t C t yα −

=
= ℘ + ∑

 
(25) 

Where 

( ) ( )

1
( )

p
p p j

j
j

t x xα −

=
℘ = − ∑

 
(26) 

( ) ( )

1
( )

p
p p j

j
j

t V Vϑ α −

=
′ ′= −∑  (27) 

And ( )tδ  is the lumped approximation errors, which can be assumed to be negligible. In other 

words, it has been supposed that, uncertainties can be approximated by a p- th order ordinary 
differential equation of the form 

( ) ( )

1

( , , ( ))) ( , , ( ))) 0
p

p p j
j

j

h h v t h h v tα −

=

′ ′∆ − ∆ =∑& &  (28) 

Where order p reflects the dynamic structure of ( , , ( )))h h v t′∆ & , and jα 's are zero or positive real 

scalars to be designed. This approximation opens the possibility to obtain the corrective input( )tϑ to 

include it into the controller to compensate the perturbation present in the plant. 
Now, we can define a coordinate transformation represented by 
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( 1)[ ]p TZ y y y −= ℘& K  (29) 

Then, the system state equation (24) and (25), in new coordinates will be 

( )Z Z tϑ= Λ + Ψ +Ξ&  (30) 

Where 

[ ]

1 1

T

T

0 1 0 0 0

0 0 1 0 0

,
0 0 1 0

0 0 0

0 0 ,

0 0 ( )

p p

T

C

A

B

t

α α α

δ

−

 
 
 
 

Λ =  
 
 
 
  

 Ψ =  

Ξ =

L

L

M M M M M M

L L

L L

L L

L

L

 

(31) 

And ( )tϑ is defined as  

( )t Zϑ µ= −  (32) 

Such that the satisfactory performance of task space trajectory tracking is obtained. Now, 
substituting (32) into (30) yields 

( )Z Zµ= Λ − Ψ + Ξ&  (33) 

 
3.1 Stability Analysis 
Choose the following Lyapunov candidate function: 

TV Z PZ=  (34) 

Where TP P= is a positive definite matrix satisfying the Lyapunov equation 

( ) ( ) 0T P P Qµ µΛ − Ψ + Λ − Ψ + = withQ representing some positive definite matrix. Taking the 

time derivative of (34) along the trajectories of (33), we have 

2
min max( ) 2 ( )V Q Z P Zλ λ≤ − + Ξ&  (35) 

Where min ( )Qλ , and max( )Pλ denote the minimum, and maximum eigen values of Q  and P , 

respectively. 
 

Remark 1: Suppose appropriate models are used and the approximation error can be ignored. Then 

V& is a negative definite matrix, and asymptotically stability of the closed-loop system can be 
approved. 
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Remark 2: If the approximation error cannot be ignored, utilizing further manipulations of (35) we 
have 

( )min max( ) 2 ( )V Z Q Z Pλ λ≤ − + Ξ&                                                                           (36) 

 
The last inequality will be negative definite whenever 

max

min

2 ( )

( )

P
Z

Q

λ
λ

Ξ
>  (37) 

This implies that ( 1)( , ..., , )py y y − ℘& is uniformly bounded.  

Using Assumptions (1) and (2) and boundedness of Z , it can be concluded from the closed-loop 

stability that the task-space velocity vector h& is bounded. Since 1( )q J q h−= && , it follows that 

1

0

( ) (0)
t

q J q hdt q−= +∫ & . Therefore, for finite operational times, the joint position q is bounded.  

 
4 Simulation Results 
In this section, we present the simulation results for the proposed control scheme. The simulation 
task is carried out based on a two degree-of-freedom planer robot driven by geared permanent 
magnet dc motors. The dynamic model of the robot system can be described in the form of (1) as  

( ) ( )
( )

2 2 2 2
1 1 2 1 2 1 2 2 2 2 1 2 2

2 2
2 2 1 2 2 2 2

2
2 1 2 2 1 2 2

2
2 1 2 1 2

2 ( ) ( )
( ) ,

( )

2 ( )( 0.5 )
( , ) ,

( )

m l m l l l l cos q m l l l cos q
D q

m l l l cos q m l

m l l sin q q q q
C q q q

m l l q sin q

 + + + +
 =
 + 

 − +
=  
 

& & &
& &

&

 

 

( )1 2 1 1 2 2 1 2

2 2 1 2

( ) ( )
( )

( )

m m l gcos q m l gcos q q
G q

m l gcos q q

 + + +
=  + 

 (38) 

The exact dynamic model parameters of the actuator and manipulator are selected as
4 4(10 ,10 )[ . . / ]B diag N m s rad− −= , (1,1)[ ]R diag= Ω , 1 0.4318l m= , 2 0.6491l m= 1 3m kg= , 2 1m kg=

, 6 6 2(10 ,10 )[ . ]mJ diag kg m− −= , (0.03,0.03)b mK K diag= = [ . / ]N m A , and (0.01,0.01)r diag= . 

Furthermore, the Jacobean matrix of the robotic manipulator are given as follows: 

1 1 2 1 2 2 1 2

1 2 2 1 2 2 1 2

( ) ( ) ( )
( )

cos( ) cos( ) cos( )

l sin q l sin q q l sin q q
J

l q l q q l q q
θ

− − + − + 
=  + + + 

 (39) 

The desired end-effector trajectory is a circle with the radius of 0.15m, as: 
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( ) 0.35 0.15cos( )

( ) 0.35 0.15sin( )
d

d

x t t

y t t

π
π

= +
 = +

 (40) 

The control parameters were selected as 0 2 2[diag (8000)]a ×= , 1 2 2[diag (80)]a ×=  , 1p = and

2 2 2 2 2 2[diag (236.465) diag (5.6916) diag (0.0245)]µ × × ×= . These choices guarantee well-damped 

behavior of the closed-loop system. It is further assumed that there exist 30% uncertainties in the 
system parameters. To see the performance of the proposed controller, Figure1 shows the actual 
motions in the x-y planes tracked by the proposed method. Figure 2 indicates tracking error in the 
task space. Figure 2 shows that the proposed control strategy can effectively attenuate the lumped 
uncertainties, and improve the tracking accuracy of the end-effector. The control efforts acting on 
the related joints are shown in Figure 3.  
 

 
Figure1. Following trajectory of the circle motion 
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Figure2. Tracking error 

 
Figure3. Motor voltages 

 
As shown in this Figure, motor voltages are smooth and do not include high frequency vibrations. 
From the above simulation results, it may be concluded that the control strategy can achieve a 
favorable control performance and has high robustness. 
 
5. Conclusion 

A robust task-space control strategy has been proposed for electrically driven robots. The control 
law has two parts. The inner control loop deletes the nonlinear dynamics of integrated actuated 
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manipulator dynamics and the outer loop stabilizes the overall control system. The system stability 
has been verified by the lyapunov method. Simulation results have demonstrated the effectiveness 
of the control. The advantage of the proposed schemes is simplicity of the control laws, which do 

not contain explicit information on the system, actuator and Jacobean matrix.  
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