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Abstract 

Thick-walled cylindrical vessels are used widely in petrochemical and power plants. New additive 

manufacturing technology has made it possible to make FGMs. This research studies the creep 

analysis in the cylindrical FGM pressure vessel by considering three models and yield criteria. Also, 

the governing equations were extracted by considering the FGM models, and for determining creep 

stresses, the partial differential equations, were solved. Norton's equation is used to determine creep 

strain rates. The advantage of the exponential model is that in the inner radius for all n radial and 

circumferential creep strains rates have a constant value that is maintained by increasing the internal 

pressure up to 400 MPa. The graphs are smooth, and their values tend to zero in the outer radius. The 

changes of creep strain rate in terms of n in different internal pressures for the exponential model in 

the inner radius of the vessel show that increasing n from -4 to 0, these parameters have a reduction 

to the form of an exponential function, and the slope of the graph has the highest value at 360 MPa. 
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1. Introduction 

Thick-walled pressure vessels are used widely in power plants and petrochemical industries. 

Universal application of these vessels includes high-pressure reactor vessels used in metallurgical 

operations, power plants, air compressor units, pneumatic reservoirs, hydraulic tanks, storage for 

gases like butane LPG, etc. [1]. In the pressure vessel and piping, creep deformation continued as the 

key design consideration. Also, creep deformation is considered a significant failure mode [2]. In 

addition, according to classical design, creep analysis should be considered for the design and 

manufacturing of structures and vessels that work at high temperatures and constant loads. The 

accurate prediction of creep life plays a key role in the structural integrity of high-temperature 

elements. Continuum damage mechanics can be applied in conjunction with FE analysis to provide a 

fundamental step in modeling creep failure [3]. Mao et al. [4] investigated creep and damage analysis 

of reactor pressure vessels considering the core meltdown scenario. An advanced model was shown 
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to analyze the fracture time and fracture position of the pressure vessel under an internally heated 

melt pool.  

Kevin et al.[5] creep response of Alloy 617 (this Alloy is an austenitic, solution-strengthened nickel-

based superalloy currently being pursued by the nuclear industry as an intermediate heat exchanger 

structural material for high-temperature Reactors). Also, they evaluated the accuracy of three 

established creep damage models in predicting the creep time-to-failure and strain-to-failure in the 

temperature range of 800-1000°C.  

The cylinders are widely used and subjected to mechanical and thermal loading. In recent years, 

researchers have sought to solve nonlinear equations governing cylinders analytically and semi-

analytically, considering new advanced materials such as Functionally graded materials (FGMs) and 

nanocomposite [6]. FGMs are a new generation of composites that are nonhomogeneous in 

microscopic terms and structural characteristics, including material distribution and phase size, which 

change gradually from one surface to another surface.  

Modern additive manufacturing processes to produce gradient metallic materials have expanded the 

application of FGMs. In the exponential model, the material profile is unique and it is not possible to 

define an FGM with the desired structure [6]. Habibi et al. [6] investigated the analysis of mechanical 

properties, and electrical potential of an FGM thick hollow cylinder that has piezoelectric property 

under mechanical and thermal loads. Distribution of the mechanical property of the material is 

considered in terms of the radius using the power distribution function.  

Hourari et al. [7] investigated the numerical prediction of the mechanical behavior up to the damage 

of the bends of the FGM-type ceramic/metal pipes. The results were presented in the form of force–

displacement curve. The analysis considered the effect of the main parameters in a bent FGM pipe 

under internal pressure and bending moment on the variation of the force–strain curves. 

In another research [8], the creep of thick-walled cylindrical vessels made of FGM with autofrettaged 

treated was investigated using the analytical method. In the equivalent stress diagram, the resulting 

stress at the plastic points of the vessel reaches the yield stress of the FGM, and the stress decreases 

along the radius. The results show that up to a dimensionless plastic depth of 1.5, the change in 

residual strain rate is negligible.  

Samiha et al. [9] developed an analytical formulation of shrink-fitted FGM axisymmetric thick-walled 

cylinders based on the linear plane elasticity theory. The results show that the variation of the FGM 

composition has a clear effect on the fit pressure in the intersection area of the two fitted cylinders. 

The value of this pressure affects the distribution of radial and tangential stresses in the FGM cylinder 

walls.  

Sklepus [10] investigated the problem of creep of FGM hollow cylinders and complex-shaped bodies 

of revolution. For the variational statement of the problem, a Lagrangian-form functional defined for 

kinematically admissible velocities is used. A numerical analytical method for solving the nonlinear 

initial–boundary-value creep problem is developed. The creep of the material is described by the 

Norton law. Also, the Young modulus and the creep characteristics of the material depend on the 

volume fraction of the reinforcing material.  

The composition evaluation of FGMs is a concern of a designer to enhance the proper functioning of 

these materials that adopt them in industrial applications [11]. Habibi et al. [12] presented a semi-

analytical method for estimating steady-state creep and elastic behavior in FGM rotary cylinders. 
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They assumed the cylinder was divided into numerous finite-width layers with constant 

thermodynamic properties in each layer. Radial and circumferential strains change (dimensionless 

stains) in terms of the radius illustrated for a different power of FGM for different temperatures and 

limited timeframe. Thermal analyses of a radially thick-walled FG spherical vessel and an infinite 

cylindrical vessel were conducted analytically by the steady-state 1D Fourier heat conduction theory 

under Dirichlet’s boundary conditions [13]. Employing an FGM power model, differential equations 

were obtained in the form of Euler-Cauchy types. Three pairs of physical metal-ceramic were selected 

to study the effect of the aspect ratio (as the inner radius to the outer radius of the structure) on the 

temperature and heat flux variation along the radial coordinate. Then a parametric study is performed 

with hypothetic inhomogeneity indexes for varying aspect ratios.  

Time-dependent creep and stress redistribution analysis of thick-walled FGM spheres under internal 

pressure and a uniform temperature field was investigated [14]. They assumed the mechanical 

properties in terms of radius obeyed the simple power law. A general solution for 1D steady-state 

thermal and mechanical stresses in a hollow thick-walled cylinder made of an FGM was obtained by 

a novel approach [15]. The temperature distribution was considered as a function of radius, with 

general thermal and mechanical boundary conditions on the inside and outside surfaces of the 

cylinder. The material properties, except Poisson's ratio, are assumed to be exponentially varying 

through the thickness.  

Kalali et. al [16] obtained an elastoplastic stress solution in the axisymmetric problems of the rotating 

disk. In their research, the rotating disk was made of ceramic/metal FGMs. They assumed that the 

material’s plastic deformation follows an isotropic strain-hardening rule based on the Von-Mises 

yield criterion. The mechanical properties of the graded material were modeled by the modified rule 

of mixtures. The analysis of mechanical and thermal stresses for a long hollow FGM cylinder as 

functions of radial and longitudinal directions is developed [17]. The material properties are graded 

along the radial direction according to the power functions of the radial direction.  

The study of Jacob [18] evaluated the influence of radial body forces on FGM and non-FGM pressure 

vessels. It contains an extensive overview of pressure vessels made from both kinds of material. Also, 

the mathematical development of the stress-strain field in the model is influenced by the body forces 

performed. Besides, a new power-law model for FGM materials has been suggested and discussed. 

The study investigates steady-state creep in a rotating Al-SiCp disc having different thickness profiles 

and reinforcement (SiCp) gradients [19]. The disc material is assumed to creep according to 

threshold-stress-based law and yield following the Tresca criterion. The stress and strain rates in the 

disc were estimated utilizing solving the disc equilibrium equation with creep fundamental equations.  

In the other research, Smaisim et al. [20] reviewed the thermoelastic and creep properties of 

functionally graded cylindrical shells, which have shown superior performance under thermo-

mechanical loads. The review covers governing equations, and analysis of works conducted and 

suggests that further research is needed to explore their creep properties under different loading 

conditions. 

Kiarasi et al. [21] attempted to improve the mechanical properties and creep behavior of the 

magnesium alloy Mg–9Al–1Zn (AZ91) in three different stress levels. They investigated 

experimentally the addition effects of different values of yttrium oxide nanoparticles to the AZ91. 
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The results revealed that the addition of yttrium oxide (Y2O3) nanoparticles increases the strength of 

AZ91 magnesium alloy until the nanoparticles do not clump in the microstructure.  

In a new study, the effect of friction and rotational speed parameters changes on the transient 

thermoelastic response of a rotating functionally graded cylinder with a short length under thermal 

and mechanical loads are studied based on the first-order shear deformation theory (FSDT) by 

Dehkourdi et al. [22]. The results show that these changes have significant effects on the measured 

parameters and in many industrial applications, these coefficients are not constant during the work 

period and have changed. 

In the newest research, Seddighi et al. [23] presented the creep analysis in a thick-walled cylinder 

under internal pressure and heat flux at the inner and outer surfaces based on the first-order shear 

deformation theory and the thermal field is assumed two-dimensional through the thickness and along 

cylinder whose in radial direction the thermal field is considered linear. The effects of parameters 

such as pressure, heat flux, and radial displacement at different temperatures on stress distribution 

have been discussed.  

According to a review of the previous studies, it is concluded that creep analysis in FGM cylindrical 

pressure vessels, considering different FGM models has not been covered yet. This research studies 

the creep analysis in the cylindrical pressure vessel by considering FGM models (exponential, power 

series, and modified power) and yield criteria such as Von Mises and Tresca. 

The equilibrium and compatibility equations governing the thick-walled cylindrical pressure vessel 

in polar coordinates are as follows: 

𝑑𝜎𝑟

𝑑𝑟
+

𝜎𝑟 − 𝜎𝜃

𝑟
= 0, (1) 

𝑑𝜀𝜃

𝑑𝑟
+

𝜀𝜃 − 𝜀𝑟

𝑟
= 0, (2) 

where 𝜎𝑟 ,  𝑎𝑛𝑑 𝜎𝜃 are radial and Circumferential stresses, also, 𝜀𝑟 , 𝑎𝑛𝑑 𝜀𝜃 are circumferential and 

radial strains.  The following equations can be concluded under the conditions of plane strain. 

𝜀𝑟 =
1

𝐸(𝑟)
{𝜎𝑟 − 𝑣(𝜎𝑧 + 𝜎𝜃)}, (3) 

𝜀𝜃 =
1

𝐸(𝑟)
{𝜎𝜃 − 𝑣(𝜎𝑧 + 𝜎𝑟)}, (4) 

𝜀𝑧 =
1

𝐸(𝑟)
{𝜎𝑧 − 𝑣(𝜎𝑟 + 𝜎𝜃)},   

𝜀𝑧 = 0     ⇨     𝜎𝑧 = 𝑣(𝜎𝑟 + 𝜎𝜃),   

(5) 

Therefore, circumferential, and radial strains are as follows: 

𝜀𝑟 =
1

𝐸(𝑟)
{(1 − 𝑣2)𝜎𝑟 − 𝑣(1 + 𝑣)𝜎𝜃}, (6) 



Journal of Modern Processes in Manufacturing and Production, Volume 12, No. 3, Summer 2023 

57 

𝜀𝜃 =
1

𝐸(𝑟)
{(1 − 𝑣2)𝜎𝜃 − 𝑣(1 + 𝑣)𝜎𝑟}, (7) 

In the present study, the Poisson's ratio (v) is considered constant and equal to 0.3. By placing radial 

and circumferential strains in the compatibility equation and using the equilibrium equation after 

simplification, we can write: 

𝑑

𝑑𝑟
{
−𝑣𝜎𝑟

𝐸(𝑟)
+

(1 − 𝑣)𝜎𝜃

𝐸(𝑟)
 } +

(1 + 𝑣)

𝐸(𝑟)

𝑑𝜎𝑟

𝑑𝑟
= 0,  (8) 

In this differential equation, the modulus of elasticity, 𝐸(𝑟). is a function of the radius of the pressure 

vessel. After simplifying equation (8), finally 

−𝑣 {
𝑑𝜎𝑟

𝑑𝑟
−

𝑑𝐸(𝑟)

𝑑𝑟

𝜎𝑟

𝐸(𝑟)
 } + (1 − 𝑣) {

𝑑𝜎𝜃

𝑑𝑟
−

𝑑𝐸(𝑟)

𝑑𝑟

𝜎𝜃

𝐸(𝑟)
 } +

𝑑𝜎𝑟

𝑑𝑟
= 0,  (9) 

The derivative of the equilibrium equation concerning Ɵ gives 
𝑑𝜎𝜃

𝑑𝑟
=

𝑑𝜎𝑟

𝑑𝑟
+ 𝑟

𝑑2𝜎𝑟

𝑑𝑟2
, therefore, 

−𝑣 {
𝑑𝜎𝑟

𝑑𝑟
−

𝑑𝐸(𝑟)

𝑑𝑟

𝜎𝑟

𝐸(𝑟)
 } + (1 − 𝑣) {𝑟

𝑑2𝜎𝑟

𝑑𝑟2
+

𝑑𝜎𝑟

𝑑𝑟
−

1

𝐸(𝑟)

𝑑𝐸(𝑟)

𝑑𝑟
(𝑟

𝑑𝜎𝑟

𝑑𝑟
+ 𝜎𝑟)}

+
𝑑𝜎𝑟

𝑑𝑟
= 0, 

(10) 

By considering radial and circumferential strains in terms of radial displacement (𝑢𝑟), we can write 

equations (6) and (7) in terms of 𝑢𝑟. 

𝜀𝑟 =
𝑑𝑢𝑟

𝑑𝑟
=

1

𝐸(𝑟)
{(1 − 𝑣2)𝜎𝑟 − 𝑣(1 + 𝑣)𝜎𝜃}, (11) 

𝜀𝜃 =
𝑢𝑟

𝑟
=

1

𝐸(𝑟)
{(1 − 𝑣2)𝜎𝜃 − 𝑣(1 + 𝑣)𝜎𝑟}, (12) 

From equations )11  ( and )12(, the following set of two unknown equations is obtained, which can be 

solved by the Kramer method. 

{
(1 − 𝑣2)𝜎𝑟 − 𝑣(1 + 𝑣)𝜎𝜃 = 𝐸(𝑟)

𝑑𝑢𝑟

𝑑𝑟

−𝑣(1 + 𝑣)𝜎𝑟 + (1 − 𝑣2)𝜎𝜃 = 𝐸(𝑟)
𝑢𝑟

𝑟

, (13) 

𝜎𝑟 =
∆𝜎𝑟

∆
= 𝐸(𝑟)

{(1 − 𝑣)
𝑑𝑢𝑟

𝑑𝑟
+ 𝑣

𝑢𝑟

𝑟
}

(1 + 𝑣)(1 − 2𝑣)
, (14) 

𝜎𝜃 =
∆𝜎𝜃

∆
= 𝐸(𝑟)

{(1 + 𝑣)
𝑢𝑟

𝑟
+ 𝑣

𝑑𝑢𝑟

𝑑𝑟
}

(1 + 𝑣)(1 − 2𝑣)
, (15) 

 

2.1 Models of FGMs 

To compare the effect of the type of FGM model on the stress distribution in the thick-walled 

cylindrical pressure vessel under internal pressure, three different models (exponential, power, and 
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modified power models) have been investigated. In this research, the value of the ratio of internal to 

external radius of the vessel (a/b) is considered equal to m. 

 

- Power Model 

In the power model, the modulus of elasticity is considered to form 𝐸(𝑟) = 𝐸0(
𝑟

𝑎
)𝑛, where a is the 

internal radius of the vessel. Also, 
𝑑𝐸(𝑟)

𝑑𝑟
=

𝑛

𝑟
𝐸(𝑟), and by placing it in the equation )10( after 

simplification, the Cauchy-Euler differential equation is obtained, which by changing variable 𝑟 =

𝑒𝑡  𝑜𝑟  𝑡 = 𝑙𝑛𝑟 becomes the differential equation with constant coefficients.  

𝑟2
𝑑2𝜎𝑟

𝑑𝑟2
+ (3 − 𝑛)𝑟

𝑑𝜎𝑟

𝑑𝑟
+

(2𝑣 − 1)𝑛

(1 − 𝑣)
𝜎𝑟 = 0, (16) 

𝑑

𝑑𝑟
=

𝑑

𝑑𝑡

𝑑𝑡

𝑑𝑟
=

𝑑

𝑑𝑡

1

𝑟
    ⇨   𝑟

𝑑

𝑑𝑟
=

𝑑

𝑑𝑡
   ⇨ 𝑟

𝑑𝜎𝑟

𝑑𝑟
=

𝑑𝜎𝑟

𝑑𝑡
,    (17) 

𝑑2

𝑑𝑟2
=

𝑑

𝑑𝑟
(

𝑑

𝑑𝑟
) =

𝑑

𝑑𝑡
(

𝑑

𝑑𝑡

1

𝑒𝑡
)

𝑑𝑡

𝑑𝑟
=

1

𝑟2
(−

𝑑

𝑑𝑡
+

𝑑2

𝑑𝑡2
)   ⇨  𝑟2

𝑑2𝜎𝑟

𝑑𝑟2
=

𝑑2𝜎𝑟

𝑑𝑡2
−

𝑑𝜎𝑟

𝑑𝑡
, (18) 

By incorporating equations (17) and (18) in the differential equation (16) and simplifying the 

following equation is obtained. 

𝑑2𝜎𝑟

𝑑𝑡2
+ (2 − 𝑛)

𝑑𝜎𝑟

𝑑𝑡
+

(2𝑣 − 1)𝑛

(1 − 𝑣)
𝜎𝑟 = 0, (19) 

By writing the characteristic equation to form 𝑡2 + (2 − 𝑛)𝑡 +
(2𝑣−1)𝑛

(1−𝑣)
= 0, the general response of 

the differential equation is obtained as follows. 

𝑡 = (
𝑛

2
− 1) ± √(1 −

𝑛

2
)

2

+
(2𝑣 − 1)𝑛

(1 − 𝑣)
     →    𝜎𝑟 = 𝐶1𝑟𝑡1 + 𝐶2𝑟𝑡2 , (20) 

The boundary conditions are considered as 𝜎𝑟(𝑟 = 𝑎) = −𝑝𝑖 and 𝜎𝑟(𝑟 = 𝑏) = 0, so the general 

response constants are obtained as follows. 

𝐶1 =
𝑝𝑖

𝑏𝑡1(𝑚𝑡2−𝑚𝑡1)
   ,   𝐶2 = −

𝑝𝑖

𝑏𝑡2(𝑚𝑡2−𝑚𝑡1)
,                  (21) 

By placing the constants in the general response, the dimensionless radial stress is determined as 

follows. 

𝜎𝑟 =
𝜎𝑟

𝑝𝑖
=

(
𝑟

𝑏
)

𝑡1

− (
𝑟

𝑏
)

𝑡2

𝑚𝑡2 − 𝑚𝑡1
, (22) 

By substituting radial stress in the equilibrium equation of the vessel, the dimensionless 

circumferential stress becomes as follows. 

𝜎𝜃 = 𝑟
𝑑𝜎𝑟

𝑑𝑟
+ 𝜎𝑟 → 𝜎Ɵ =

𝜎𝜃

𝑝𝑖
=

(1 + 𝑡1) (
𝑟

𝑏
)

𝑡1

+ (1 + 𝑡2) (
𝑟

𝑏
)

𝑡2

𝑚𝑡2 − 𝑚𝑡1
, (23) 
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- Exponential Model  

In the exponential model, the modulus of elasticity is considered to form 𝐸(𝑟) = 𝐸0𝑒𝑛𝑟, where n is 

constant, and r is the radius along with the thickness of the vessel.  

By substituting 
𝑑𝐸(𝑟)

𝑑𝑟
= 𝑛𝐸(𝑟)  and equations of (14) and (15) into the equilibrium equation of vessel, 

and 
𝑣

1−𝑣
= 𝑣1. finally, the second-order differential equation is obtained with variable coefficients, 

which can be solved by using the power series method.  

𝑟2
𝑑2𝑢𝑟

𝑑𝑟2
+ (1 + 𝑛𝑟)𝑟

𝑑𝑢𝑟

𝑑𝑟
+ (𝑣1𝑛𝑟 − 1)𝑢𝑟 = 0, (24) 

In this model, n=1, 2, 3, and v = 0.3. For solving the equation, the radial displacement is considered 

as follows. 

𝑢𝑟 = ∑ 𝑎𝑗𝑟𝑗+𝑠

∞

𝑗=0

  ,
𝑑𝑢𝑟

𝑑𝑟
= ∑ 𝑎𝑗(𝑗 + 𝑠)𝑟𝑗+𝑠−1,   

∞

𝑗=0

𝑑2𝑢𝑟

𝑑𝑟2
= ∑ 𝑎𝑗(𝑗 + 𝑠)(𝑗 + 𝑠 − 1)𝑟𝑗+𝑠−2

∞

𝑗=0

 ,   

By substituting 𝑢𝑟 ,  
𝑑𝑢𝑟

𝑑𝑟
 and 

𝑑2𝑢𝑟

𝑑𝑟2  in equation (24), after simplification we will have:  

∑ 𝑎𝛽[
(𝛽 + 𝑠)(𝛽 + 𝑠 − 1) + (𝛽 + 𝑠 − 1)

+𝑣1𝑛(𝛽 + 𝑠 − 1) − 1]𝑟𝛽+𝑠

∞

𝛽=0

= 0, (25) 

By considering 𝛽 = 0. then 𝑠(𝑠 − 1) + (𝑠 − 1) + 𝑣1𝑛(𝑠 − 1) − 1 = 0, therefore. 

𝑠2 + 𝑣1𝑛𝑠 − (𝑣1𝑛 + 2) = 0.     ∆= (𝑣1𝑛 + 2)2 + 4 > 0    →    𝑠1.2 =
−𝑣1𝑛 ± √∆

2
,  

 

As a result, the radial displacement and its derivative relative to the radius are written as follows. 

𝑠 = −
𝑣1𝑛

2
± √(

𝑣1𝑛

2
+ 1)

2

+ 1 →    𝑢𝑟 = 𝐶1𝑟𝑠1 + 𝐶2𝑟𝑠2 , (26) 

𝑑𝑢𝑟

𝑑𝑟
= 𝐶1𝑠1𝑟𝑠1−1 + 𝐶2𝑠2𝑟𝑠2−1 (27) 

By incorporating equations (26) and (27) in the equations (22) and (23), radial and circumferential 

stresses are obtained as follows. 

𝜎𝑟 =
𝐸(𝑟)

(1 + 𝑣)(1 − 2𝑣)
{𝐶1𝑟𝑠1−1((1 − 𝑣)𝑠1 + 𝑣) + 𝐶2𝑟𝑠2−1((1 − 𝑣)𝑠2 + 𝑣)}, (28) 

𝜎𝜃 =
𝐸(𝑟)

(1 + 𝑣)(1 − 2𝑣)
{𝐶1𝑟𝑠1(1 − 𝑣 + 𝑣𝑠1) + 𝐶2𝑟𝑠2(1 − 𝑣 + 𝑠2𝑣)}, (29) 

Considering the boundary conditions 𝜎𝑟(𝑟 = 𝑎) = −𝑝𝑖 and 𝜎𝑟(𝑟 = 𝑏) = 0. We will have: 
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𝐶1 =
−1

(𝑚𝑠2 − 𝑚𝑠1)
{

𝑝𝑖(1 + 𝑣)(1 − 2𝑣)

𝐸(𝑟)𝑏𝑠1 (𝑣 +
𝑠1

𝑟
(1 − 𝑣))

}, (30) 

𝐶2 =
1

(𝑚𝑠2 − 𝑚𝑠1)
{

𝑝𝑖(1 + 𝑣)(1 − 2𝑣)

𝐸(𝑟)𝑏𝑠2 (
𝑣

𝑟
+

𝑠2

𝑟
(1 − 𝑣))

},        (31) 

Therefore, by placing these constants in stress equations, the dimensionless radial and circumferential 

stresses can be determined from the following equations. 

𝜎𝑟 =
𝜎𝑟

𝑝𝑖
 =

1

𝑚𝑠1−1 − 𝑚𝑠2−1
{(

𝑟

𝑏
)

𝑠1−1

− (
𝑟

𝑏
)

𝑠2−1

}, (32) 

𝜎Ɵ =
𝜎𝜃

𝑝𝑖
=

𝑏

𝑚𝑠1−1 − 𝑚𝑠2−1
{{(

𝑟

𝑏
)

𝑠2

− (
𝑟

𝑏
)

𝑠1

}}, (33) 

 

- Modified Power Model  

In the modified power model, the modulus of elasticity is considered as 𝐸(𝑟) =
𝐸0

2
{(

𝑟

𝑎
)𝑛 + (

𝑟

𝑏
)𝑛},  

where n is constant and r (𝑎 ≤ 𝑟 ≤ 𝑏) is the radius along with the thickness of the vessel. By 

substituting 
𝑑𝐸(𝑟)

𝑑𝑟
=

𝑛

𝑟
𝐸(𝑟),

2𝑣−1

1−𝑣
= 𝑣1 and equation (14) and (15) into the equilibrium equation of the 

vessel, the Cauchy-Euler differential equation is obtained. By changing variable 𝑟 = 𝑒𝑡  𝑜𝑟  𝑡 = 𝑙𝑛𝑟, 

the differential equation with constant coefficients is obtained. The characteristic equation for this 

equation is written as equation (35) which is easily determined by the delta method. 

𝑟2
𝑑2𝜎𝑟

𝑑𝑟2
+ (2 − 𝑛)𝑟

𝑑𝜎𝑟

𝑑𝑟
+ 𝑣1𝑛𝜎𝑟 = 0, (34) 

𝑑2𝜎𝑟

𝑑𝑡2
+ (1 − 𝑛)

𝑑𝜎𝑟

𝑑𝑡
+ 𝑣1𝑛𝜎𝑟 = 0, 

𝑡2 + (1 − 𝑛)𝑡 + 𝑣1𝑛 = 0 , 

∆= (1 − 𝑛)2 − 4𝑣1𝑛, 

𝑣1 =
2𝑣 − 1

1 − 𝑣
= −0.7559  →   ∆> 0,    

𝑡1 =
1

2
{𝑛 − 1 + √(1 − 𝑛)2 − 4𝑣1𝑛}, 

𝑡2 =
1

2
{𝑛 − 1 − √(1 − 𝑛)2 − 4𝑣1𝑛}, 

(35) 

𝜎𝑟 = 𝐶1𝑟𝑡1 + 𝐶2𝑟𝑡2 , (36) 
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The boundary conditions are considered as 𝜎𝑟(𝑟 = 𝑎) = −𝑝𝑖 and 𝜎𝑟(𝑟 = 𝑏) = 0, so the general 

response constants are obtained as follows: 

𝜎𝑟 =
𝑝𝑖

𝑏𝑡1(𝑚𝑡2 − 𝑚𝑡1)
𝑟𝑡1 −

𝑝𝑖

𝑏𝑡2(𝑚𝑡2 − 𝑚𝑡1)
𝑟𝑡2 , (37) 

Therefore, the dimensionless radial stress can be determined from the following equations: 

𝜎𝑟 =
𝜎𝑟

𝑝𝑖
=

1

𝑚𝑡2 − 𝑚𝑡1
{(

𝑟

𝑏
)

𝑡1

− (
𝑟

𝑏
)

𝑡2

}, (38) 

By substituting radial stress in the equilibrium equation of the vessel, the dimensionless membrane 

stress becomes as follows. 

𝜎𝜃 = 𝑟
𝑑𝜎𝑟

𝑑𝑟
+ 𝜎𝑟 →  𝜎Ɵ =

𝜎𝜃

𝑝𝑖
=

1

𝑚𝑡2 − 𝑚𝑡1
{(1 + 𝑡1) (

𝑟

𝑏
)

𝑡1

+ (1 + 𝑡2) (
𝑟

𝑏
)

𝑡2

}, 
 

(39) 

 

2.2 Creep in Vessel 

Creep is an important material behavior occurring at elevated temperatures, especially at that higher 

than 50% of the melting temperature of the material. It is the time-dependent, inelastic deformation 

that takes place when the material is subjected to a load over time. A structure changes the state of 

stress and strains, reduction in material strength, etc. The deformation is commonly characterized in 

the form of strain versus time data, known as the creep curve [24]. The Modulus of elasticity (E) of 

the FGM vessel at any radius (r) is evaluated from the rule of the mixture as follows: 

𝐸(𝑟) = 𝐸𝑑𝑉𝑑+𝐸𝑚(1 − 𝑉𝑚), (40) 

Where 𝑉𝑑 is the average volume fraction of SiCp reinforcement in the composite cylinder and 𝐸𝑑 (450 

GPa) and 𝐸𝑚 (69 GPa) are, respectively, the Elastic modulus of SiCp and Al matrix [25]. The material 

of the cylinder is assumed to undergo steady-state creep following Norton’s law [26-28]: 

𝜀̇ = 𝐵(𝑟)�̅�𝑛(𝑟), (41) 

Where 𝜎 is the effective stress given by yield criterion, and 𝜀̇ is the effective strain rate and 𝐵(𝑟) and 

𝑛(𝑟) are the creep parameters at any radius 𝑟 of the composite vessel that depended on the content of 

SiCp [28] in the vessel. These parameters are estimated as follows: 

𝐵(𝑟) = 𝐵0 [
𝑉(𝑟)

𝑉𝑎𝑣𝑒
]

𝜑

, (42) 

𝑛(𝑟) = 𝑛0 [
𝑉(𝑟)

𝑉𝑎𝑣𝑒
]

−𝜑

, (43) 

 

where 𝜑 is the grading index, and 𝐵0 is the value of creep parameter 𝐵 for a similar composite vessel 

but having a uniform distribution of SiCp equal to 𝑉𝑎𝑣𝑒 over the entire radius. Also, 𝑛0 is the value of 

stress exponent (𝑛) for a similar composite vessel with a uniform distribution of SiCp equal to 𝑉𝑎𝑣𝑒 

everywhere. By incorporating equations (22), (23), (32), (33), (38), and (39) in equation (41), the 

dimensionless radial and circumferential creep strains rate for three models is as follows: equations 

(44) and (45) for exponential model, equations (46) and (47) for power model, and equations (48) 

and (49) for modified power model.  
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𝜀�̇�𝑎𝑑𝑖𝑎𝑙 = 𝜀�̇� = 𝐵{
(

𝑟

𝑏
)

𝑡1

− (
𝑟

𝑏
)

𝑡2

𝑚𝑡2 − 𝑚𝑡1
}𝑛, 

(44) 

𝜀�̇�𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 = 𝜀�̇� = 𝐵{
(1 + 𝑡1) (

𝑟

𝑏
)

𝑡1

+ (1 + 𝑡2) (
𝑟

𝑏
)

𝑡2

𝑚𝑡2 − 𝑚𝑡1
}𝑛, 

(45) 

𝜀�̇�𝑎𝑑𝑖𝑎𝑙 = 𝜀�̇� = 𝐵{
1

𝑚𝑠1−1−𝑚𝑠2−1 {(
𝑟

𝑏
)

𝑠1−1

− (
𝑟

𝑏
)

𝑠2−1

}}𝑛, (46) 

𝜀�̇�𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 = 𝜀�̇� = 𝐵{
𝑏

𝑚𝑠1−1 − 𝑚𝑠2−1
{{(

𝑟

𝑏
)

𝑠2

− (
𝑟

𝑏
)

𝑠1

}}}𝑛, (47) 

𝜀�̇�𝑎𝑑𝑖𝑎𝑙 = 𝜀�̇� = 𝐵{
(

𝑟

𝑏
)

𝑡1

− (
𝑟

𝑏
)

𝑡2

𝑚𝑡2 − 𝑚𝑡1
}𝑛, 

(48) 

𝜀�̇�𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 = 𝜀�̇� = 𝐵{
(1 + 𝑡1) (

𝑟

𝑏
)

𝑡1

+ (1 + 𝑡2) (
𝑟

𝑏
)

𝑡2

𝑚𝑡2 − 𝑚𝑡1
}𝑛, 

(49) 

The equivalent stress is obtained from the Tresca and Von Mises criteria of the following equations: 

σ̅Tresca = |σ̅θ − σ̅r|,  (50) 

σ̅Von Mises = √ σ̅θ
2 + σ̅r

2 − σ̅θσ̅r,                                                                                                                 (51) 

  

Where; σ̅θ, σ̅r for dimensionless circumferential and radial stress can be replaced from equations (22), 

(23), (32), (33), (38), (39) for power, exponential, and modified power models, respectively.  

 

3 Results and Discussion 

3.1 Stress Analysis in Vessel 

Dimensionless radial and circumferential stresses in terms of dimensionless radius for three models 

of FGMs are illustrated in Figures 1-3. According to Figure 1a, it is observed that for the exponential 

model, the dimensionless radial stress in the inner and outer radii of the vessel has a constant value 

for different views of the radial ratio, and with the increase of the value of n from -4 to zero, the slope 

of the graph becomes less and when n is equal to zero, the FGM model tends towards homogeneous 

material. Also, this model creates dimensionless negative radial and circumferential stresses in the 

vessel wall. According to Figure 4b, by increasing the value of n from -4 to zero, the amount of radial 

stress without compressive dimension decreases in the inner radius of the tank, and in the outer radius 

of the tank, the number of changes in n has no effect. 

Figures 2a, and b, show the changes of the dimensionless radial stress in terms of the dimensionless 

radius for the power model which are in the form of a decreasing exponential function, and have a 

positive value in the inner radius and for external radius becomes zero. Also, by increasing the value 

of n towards zero, the dimensionless radial stress decreases, which is significant in the middle 

thickness of the vessel (dimensionless radius equal to 0.75). According to Figure 2a, the changes in 

dimensionless circumferential stress are in the form of an exponential function of increasing pressure, 

which is reduced by increasing the value of n towards -4, and this stress reduction is significant in the 

middle thickness of the vessel.  
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Dimensionless radial and circumferential stresses change in terms of dimensionless radius for the 

modified power model (Figures 3a, b) also have a negative value. In dimensionless radial stress, the 

slope of the graph decreases with the increase of the n value from -4 to zero. The changes in the 

graphs also increase as an exponential function from the side of the inner wall to the outer wall of the 

vessel. In Figure 3a, the circumferential stress has a negative value and in the inner wall of the vessel, 

it is different for different values of view n, and the highest value of compressive stress is related to 

viewing -4 and with the increase of the dimensionless radius from the inner wall towards the wall 

externally, this difference decreases. 
 

 

Figure 1. Dimensionless stresses in terms of dimensionless radius, a) radial stress, and b) circumferential stress (The 

exponential model)  

 

Figure 2. Dimensionless stresses in terms of dimensionless radius, a) radial stress, and b) circumferential stress (The 

power model) 
 

The dimensionless radial and circumferential stress distribution in terms of the dimensionless radius 

for all three models, at n equal to 4, is shown in Figure 4. According to these graphs, the exponential 
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and modified power models have close results. The stresses created by these two models in the vessel 

are the pressure which is the highest value in the inner radius and converges to zero in the outer radius 

of the vessel. The second FG model also creates radial tensile stress in the vessel wall and a small 

circumferential compressive stress is created in the vessel. 

 

 
Figure 3. Dimensionless stresses in terms of dimensionless radius, a) radial stress, and b) circumferential stress (The 

modified power model) 

 

Figure 4. Distribution of dimensionless stresses in terms of dimensionless radius for all three models, a) radial stress, 

and b) circumferential stress (n= -4) 

    

3.2 Creep Strain Rate Analysis in Vessel 

In the Norton equation, the values of 𝐵0, 𝑛0, 𝜑 in equations (42), and (43) according to [29], are 

2.77 × 10−16, 3.75, 0.7, respectively. However, it has been shown that changing these parameters 

(𝐵(𝑟), 𝑛(𝑟)) has little effect on the strain rate in Norton’s equation [41], so in the present work, these 

two parameters are considered constant (𝐵 = 4.79 × 10−22 𝑀𝑃𝑎−6𝑠−1, 𝑛 = 6) [30].  
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The changes in the rate of creep strains (radial, circumferential) in terms of n with different internal 

pressures for the exponential FG model in the inner radius of the tank can be seen in Figures 5 and 6. 

According to the graphs, the changes in the rate of circumferential creep, Von Mises, and Tresca 

strains decrease exponentially with increasing n from -4 to zero, and the slope of the graph has the 

highest value at a pressure of 360 MPa. Also, the rate of creep strains remains constant with the 

change in pressure. The changes in the rate of creep strains (Von Mises and Tresca) in terms of n with 

different internal pressures for the exponential model for FGM in the inner radius of the vessel are 

illustrated in Figures 7 and 8. According to the graphs, changes in the rate of circumferential creep, 

Von Mises, and Tresca strains decrease exponentially with increasing n from -4 to zero, and the slope 

of the graph has the highest value at a pressure of 360 MPa, and the rate of creep strains remain 

constant with in terms of pressure. 

For the power FGM model and dimensionless average radius, the changes in creep strain rates in 

terms of n with different internal pressures up to 360 MPa are shown in Figures 7 and 8. From these 

graphs, the changes of these parameters change from a linear form to a decreasing exponential 

function as the internal pressure of the vessel increases from 40 MPa and n from -4 to zero. Also, the 

slope of the graphs increases, and they have the lowest value on the outer radius of the vessel. 

 
Figure 5. The changes in the rate of creep strains in terms of different internal pressures (MPa), a) radial stress, and b) 

circumferential stress (The exponential model and internal radius) 
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Figure 6. The changes in the rate of creep strains in terms of different internal pressures (MPa), a) Von-Mises, and b) 

Tresca (The exponential model and internal radius) 

 

                                   

 

Figure 7. The changes in the rate of creep strains in terms of different internal pressures (MPa), a) radial, and b) 

circumferential (The power model and dimensional mean radius) 
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Figure 8. The changes in the rate of creep strains in terms of different internal pressures (MPa), a) Von-Mises, and b) 

Tresca (The power model and internal radius) 

 

The changes of the radial and circumferential creep strains rate in terms of dimensionless radius for 

different n and internal pressure equal 400 MPa (all three models) illustrated in Figures 9a-c and 10a-

c. For n=0, in all three models, the considered FGM is transformed into a homogeneous state, and an 

identical solution for the radial creep strain rate is obtained. From the power model, a higher value of 

the radial creep strain rate is obtained for different n. According to these figures observed for 

dimensionless mean radius, in n=-4, the exponential and modified power models, the radial creep 

strain rates have very small and close values.  The effect of n in the second model is far less than in 

the other two models. According to Figure 10b, the pressure of 400 MPa has a significant effect on 

the circumferential creep strain rate in the dimensionless mean radius for the Power model. The value 

of the circumferential creep strain rate created in the dimensionless mean radius for the exponential 

and modified power FGM models is much lower than the power model. The changes in the rate of 

creep strains (radial, circumferential, Von-mises, and Tresca) in terms of dimensionless radius for 

different internal pressure (40 MPa-400 MPa), n=-1.5, and dimensionless mean radius a) the 

exponential model, b) the power model, and c) the modified power model) illustrated in Figure 11. 

According to Figure 11a, c is observed that the slope of circumferential creep strain rate curve in the 

exponential and modified power FGM models for the dimensionless mean radius is much higher than 

other strain rate curves and compared to the second model, much lower values have been obtained 

for the strain rates.  
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Figure 9. The changes in the rate of radial creep strain in terms of dimensionless radius for different n, a) the 

exponential model, b) the power model, and c) the modified power model (internal pressure, 400 MPa) 
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Figure 10. The changes in the rate of circumferential creep strain in terms of dimensionless radius for different n, a) the 

exponential model, b) the power model, and c) the modified power model (internal pressure, 400 MPa) 
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Figure 11. The changes in the rate of creep strains in terms of internal pressure, a) the exponential model, b) the power 

model, and c) the modified power model (n=-1.5, dimensionless mean radius) 
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For further discussion of the results of the three models of the present work, two new ratios in the 

following form were considered: 

𝑅1 = 𝑅𝑠𝑟𝑎𝑖𝑛 𝑟𝑎𝑡𝑒 =
𝑅𝑎𝑑𝑖𝑎𝑙 𝑐𝑟𝑒𝑒𝑝 𝑠𝑡𝑟𝑎𝑖𝑛 𝑟𝑎𝑡𝑒

𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙  𝑐𝑟𝑒𝑒𝑝 𝑠𝑡𝑟𝑎𝑖𝑛 𝑟𝑎𝑡𝑒
 ,    𝑅2 = 𝑅𝑒𝑞 =

𝑉𝑜𝑛−𝑀𝑖𝑠𝑒𝑠 𝑐𝑟𝑒𝑒𝑝 𝑠𝑡𝑟𝑎𝑖𝑛 𝑟𝑎𝑡𝑒

𝑇𝑟𝑒𝑠𝑐𝑎  𝑐𝑟𝑒𝑒𝑝 𝑠𝑡𝑟𝑎𝑖𝑛 𝑟𝑎𝑡𝑒
 

According to Tables 1 and 2, the value of 𝑅1, 𝑅2 in terms of internal pressure for three models are 

illustrated. Although increasing internal pressure, radial, and circumferential creep strain rates 

increase, 𝑅1,  for three models, and 𝑅2 for exponential and modified power models, remains almost 

constant which is an interesting and thought-provoking result. 

 

Table. 1. Variation of radial, and circumferential creep strains rate, and R_1  in terms of internal pressure 

Internal 

Pressure 

(MPa) 

Radial Creep Strain Rate, 

 n=-1.5 

Circumferential Creep Strain Rate,  

n=-1.5 
𝑅𝑠𝑟𝑎𝑖𝑛 𝑟𝑎𝑡𝑒=𝑅1 

FGM Models 

Exponential Power 
Modified 

Power 
Exponential Power 

Modified 

Power 

Exponential 

(×10-4) 

Power 

(×10-12) 

Modified 

Power 

(×10-2) 

40 3.15×10-17 8.84×10-16 1.45×10-15 5.32×10-14 1.57×10-04 1.74×10-14 5.92 5.63 8.33 

80 2.02×10-15 5.66×10-14 9.28×10-14 3.40×10-12 1.01×10-02 1.11×10-12 5.94 5.60 8.36 

120 2.30×10-14 6.44×10-13 1.06×10-12 3.88×10-11 1.15×10-01 1.27×10-11 5.93 5.60 8.35 

160 1.29×10-13 3.62×10-12 5.94×10-12 2.18×10-10 6.44×10-01 7.11×10-11 5.92 5.62 8.35 

200 4.92×10-13 1.38×10-11 2.27×10-11 8.31×10-10 2.46×10+00 2.71×10-10 5.92 5.61 8.38 

240 1.47×10-12 4.12×10-11 6.77×10-11 2.48×10-09 7.34×10+00 8.10×10-10 5.93 5.61 8.36 

280 3.70×10-12 1.04×10-10 1.71×10-10 6.26×10-09 1.85×10+01 2.04×10-09 5.91 5.62 8.38 

320 8.26×10-12 2.32×10-10 3.80×10-10 1.39×10-08 4.12×10+01 4.55×10-09 5.94 5.63 8.35 

360 1.67×10-11 4.70×10-10 7.71×10-10 2.83×10-08 8.36×10+01 9.23×10-09 5.90 5.62 8.35 

400 3.15×10-11 8.84×10-10 1.45×10-09 5.32×10-08 1.57×10+02 1.74×10-08 5.92 5.63 8.33 

 

Table. 2. Variation of radial, and circumferential creep strains rate in terms of internal pressure 

Internal 

Pressure 

(MPa) 

Von-Mises Creep Strain Rate, n=-1.5 Tresca Creep Strain Rate, n=-1.5 𝑅𝑒𝑞=𝑅2 

FGM Models 

Exponential Power 
Modified 

Power 
Exponential Power 

Modified 

Power 

Exponential 

(×10-4) 

Power 

(×10-12) 

Modified 

Power 

(×10-2) 

40 2.66×10-14 9.04×10-04 7.34×10-15 6.82×10-15 1.70×10-04 3.36×10-16 3.90 5.32 21.8 

80 1.70×10-12 5.79×10-02 4.70×10-13 4.37×10-13 1.09×10-02 2.15×10-14 3.89 5.31 21.9 

120 1.94×10-11 6.59×10-01 5.35×10-12 4.97×10-12 1.40×10-02 2.45×10-13 3.90 47.1 21.8 

160 2.18×10-10 3.70×10+00 3.01×10-11 1.09×10-10 1.24×10-01 1.38×10-12 2.00 29.8 21.8 

200 4.16×10-10 1.41×10+01 1.15×10-10 1.07×10-10 6.98×10-01 5.25×10-12 3.89 20.2 21.9 

240 1.24×10-09 4.22×10+01 3.42×10-10 3.18×10-10 7.95×10+00 1.57×10-11 3.90 5.31 21.8 

280 3.13×10-09 1.06×10+02 8.63×10-10 8.03×10-10 2.00×10+01 3.95×10-11 3.90 5.30 21.8 

320 6.98×10-09 2.32×10-10 3.80×10-10 1.39×10-08 4.12×10+01 4.55×10-09 5.94 5.63 21.8 

360 1.67×10-11 4.70×10-10 7.71×10-10 2.83×10-08 8.36×10+01 9.23×10-09 5.90 5.62 8.35 

400 3.15×10-11 8.84×10-10 1.45×10-09 5.32×10-10 1.57×10+02 1.74×10-08 5.92 5.63 8.33 

 

4. Conclusion 

The analytical results of this study can be summarized as follows; 

1. The variation of creep strains rate for exponential FGM model in internal radius with 

increasing n from -4 to 0, reduces as an exponential function. Also, the slope of the graph has 
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the highest value at a pressure of 360 MPa, and the changes in creep strain rate in terms of 

pressure remain constant. 

2. In the power FGM model, considering mean radius and parameters changes (internal pressure: 

40-400 MPa, n=-4-0), the creep strains rate decreases as an exponential function, and the slope 

of the graphs increases, and they have the lowest value on the outer wall of the vessel. 

3. The advantage of the power FGM model compared to the exponential model is that in the 

inner radius for all n, the investigated parameters have a constant value, and this type of 

change is maintained by increasing the internal pressure value up to 400 MPa. The graphs are 

smooth, and their values tend to zero in the outer wall. 

4. According to the results of the current research that have been obtained for different pressures, 

the Von Mises yield criterion can be used to discuss the selection of a reliable model. 

5. According to Tables 1 and 2, although increasing internal pressure, radial, and circumferential 

creep strains rate increase, 𝑅1,  for all three models, and 𝑅2 for exponential and modified 

power models, remains almost constant which is an interesting and thought-provoking result. 
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