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Abstract 

This paper points out some errors based on the one-dimensional Taylor series for a multi-dimensional 

function that is used for robots manufacturing. It is argued that the proof of theorem 1 is not 

mathematically true, and consequently, the obtained results cannot be correct. In addition to this, the 

stability analysis presented in the paper does not address the saturated area properly. Therein, stability 

is analyzed separately in saturated and unsaturated operation areas. However, the stability of the 

closed-loop system may not be guaranteed through these separate analyses, since transitions from 

saturation area to unsaturated area and vice versa are neglected. This work is an extension of the 

above paper, based on the revised Taylor series and considering actuator saturation limit in both 

controller design and stability analysis. 
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1. Introduction 

During the past several years, function approximation methods such as Taylor series [1], Chebyshev 

polynomials [2], Fourier series [3,4], neuro-fuzzy systems [5, 6], and Legendre polynomials [7-9] 

have increasingly been recommended in robust adaptive control of complicated systems. The Stone-

Weierstrass theorem from the classical real analysis can be used to show that these architectures 

possess the universal approximation capability. 

Ahamadi and Fateh [10], proposed a new control scheme utilizing the Taylor series as a Universal 

approximator. They assumed that an n degree of freedom (DOF) actuated robotic system could be 

decentralized to n double integrators plus lumped uncertainty. The Taylor series expansion can then 

be utilized to approximate each subsystem (a real-valued nonlinear function of several real variables) 

to arbitrary accuracy. They claimed that the Taylor series satisfies the conditions of the Stone-

Weierstrass theorem. The proof of their main theorem 1, however, is not technically true. In addition 

to this, the proposed approach in [10] does not give suitable stability analysis for the overall control 

system. It uses the boundedness of the saturated signal to prove the stability and boundedness of the 

closed-loop internal signals. It is worth emphasizing that in the saturated area of the control input, the 

controller operation does not influence the plant since the actuators are driving the system by their 
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maximum value. In this condition, although the tracking error is bounded, it may be unacceptable due 

to unsatisfactory performance. Nevertheless, the stability analysis presented in [10], does not address 

the saturated area properly. Another important issue is that in [10] stability is analyzed separately in 

saturated and unsaturated operation areas. However, the stability of the closed-loop system may not 

be guaranteed through these separate analyses, since transitions from saturation area to unsaturated 

area and vice versa are neglected. Therefore, there is a gap in the stability analysis in the above paper. 

The objective of this paper is to modify the previous results on the controller design and robust 

stability analysis of the work proposed by [10].  

This paper is organized as follows. Section 2 presents some preliminaries about the Heine-Borel and 

Stone-Weierstrass theorems. Section 3 indicates that the utilized approximation in [10] is not 

technically correct. Section 4 briefly presents dynamic modeling of the robotic system including the 

robot manipulator and the permanent magnet DC motors subjected to actuator saturation. In section 

5 we'll see how the Taylor series can be used to approximate any continuous function with the 

Weierstrass approximation theorem. Section 6 presents the Indirect Adaptive Taylor-series-based 

controller design. Section 7 presents the direct Adaptive Taylor-series-based controller. Finally, 

concluding remarks are drawn in section 8. 

 

2. Preliminaries  

We firstly state the celebrated Heine-Borel and Stone-Weierstrass theorems [11]. Henceforth, we will 

use the same notation and equation numbers as ref [10]. 

Theorem 1 (Heine-Borel Theorem). A subset U of n  is compact if and only if U  is closed 

(including all of the limited points) and bounded.  

As a result of the Heine-Borel Theorem, the sets  
1

,
n

i i
i

a b

  are compact n . 

Theorem 2 (Stone-Weierstrass Theorem). Let U be a compact metric space. Let ( )Y C U  be an 

algebra such that 

(1) Y contains a non-zero constant function; 

(2) Y separates points (i.e., if 1 2,x x U , 1 2x x , then there exists p Y such that 1 2( ) ( )p x p x ). 

Then Y  is uniformly dense in ( )C U , the set of continuous real-valued functions on U . In other 

words, for any 0   and any function g  in ( )C U , there is a function p  in Y such that 

( ) ( )p x g x    for all x U . 

 

3. Errors 

We will show that the Taylor-series expansion of real-valued functions with one real variable cannot 

be used to approximate the nonlinear function if  given by Eq. (6). Some considering to [10], it can 

be seen that the input universe of discourse U is a compact set in n . Furthermore, Theorem 1 of 

[10] says that 

sup ( ) ( )N
x U

p x g x 


   (a1) 
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where 
( )

0
0

0

( )
( ) ( )

!

jN
j

N

j

h x
p x x x

j

  . In the above inequality, we note that the domain Np  belongs to 

, while the function g  is defined on U  which is a subset of n . So, the above relation holds only 

on U   . 
 

Result 1: The inequality (a1) can be applied in the following forms: 

1) Taylor series should be written for n-variables: This is complicated, whereas it requires linear 

parameterization of the Taylor series polynomial including Hessian matrix, etc. Moreover, the 

availability of the systems' states is another issue in this type of controller design. 
 

2) The domain g  is reduced to a subset U of . This is impossible, unless ( )Np x  and ( )g x  is 

considered as a function of time, instead of a function of the system's states. In this manner, U  is 

belongs to . This concept will be utilized for the next controller improvement.   
 

Because of the above discussion, the obtained results in [10], cannot be correct. In the following, we 

show that the proof of Theorem 1 from [10], Y cannot separates points U  by creating the proposed 

single variable Taylor series ( )Np x . Toward this end, assume that g  be a function of two variables. 

Suppose that, 1 1( , )Tx y z , and 2 2( , )Tx y z  are two arbitrary points in 2U  . Thus, utilizing the 

specific Taylor series system described as 
( )

0
0

0

( )
( ) ( )

!

jN
j

N

j

h y
p y y y

j

  it can easily see that

1 2( ) ( )N Np x p x . As a result, the second condition of the Stone-Weierstrass theorem is not satisfied. 

 

4. Dynamic modeling 

Consider an n-link manipulator driven by geared permanent magnet DC motors with voltages being 

inputs to amplifiers. As in [10], the dynamics are described by 

( ) ( , ) ( ) ( )   r fD q q C q q q g q τ τ q  (a2) 

1 1
r m a

   Jr q Br q rτ K I
 

(a3) 

1 ( )a a b t   RI LI K r q v
 

(a4) 

where the parameters are defined exactly similarly to [10]. Note that vectors and matrices are 

represented in bold form for clarity. Now, substitution of (a2) and (a3) into (a4) yields 

1 1 1 1 1( ) ( ( ) ( , ) ( )

                                   ( )) ( )

m m b m

f a t

        

   

RK Jr q RK B K r q RK r D q q C q q q g q

τ q LI v  
(a5) 

For practical situations, the actuator input voltages are subjected to some constraints, called motor 

saturation limits. This occurs usually between the output of the controller and the PWM module. 

Following the same notation as in [10], for the development of the controller in this paper, we assume 
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that the relation between the actual actuator's input ( ( ) )nt v  and the control signal produced by 

the controller ( ( ) )nt u is given by 

( ) ( ( ))t tv h u  (a6) 

( ( )) nt h u is a continuous nonlinear function representing the saturation nonlinearity or its 

approximation. The non-implemented control signal of the actuators can be expressed as 

( ( )) ( ) ( ( ))t t t  u u h u  (a7) 

Now, substituting (a6) into (a5), and using (a7) we have 

1 1 1 1 1( ) ( ( ) ( , ) ( ) ( ))

( ) ( ( ))

m m b m f

a t t

         

   

RK Jr q RK B K r q RK r D q q C q q q g q τ q

LI u u  
(a8) 

To develop our control scheme, assume that Eq. (a8) can be represented by a nonlinear differential 

equation, called "available model" as 

( )t q F u
 

(a9) 

where 

1 1 1 1

1

( ) ( ) ( ( ))

( ( ) ( , ) ( ) ( )))

m m b a

n
m f

t   



      

    

F RK Jr I q RK B K r q LI u

RK r D q q C q q q g q τ q  
(a10) 

is referred to as the lumped uncertainty, and n nI represents the identity matrix. 
 

Remark 1: The control input given by (a6) indicates that the motor voltage is limited, that is 

max( ) v t u  (a11) 

where ( )v t
 
stands for the ith entry of vector ( )tv , and maxu  is a positive constant representing the 

maximum permitted voltage of the ith motor. As a result, nq , nq  and n
a I  are bound. 

This is a result of BIBO stability. 
 

Remark 2: For using some results of the stability analysis of [10], we present the mentioned Taylor 

series-based controller in a decentralized form. With this in mind, the controller design will be 

developed for the following model 

i i iq f u 
 

(a12) 

 

5. Function approximation using Taylor-series 

Uncertainty estimators are not confined to fuzzy systems and neural networks. In the calculus courses, 

it is well known that, given a function ( )f t  and a point an in the domain of  f, suppose the function 

is n-times differentiable at a, then we can construct a polynomial 
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( )

0

( )
( ) ( )

!

pl
p

l

p

f a
f t t a

p

 
 

(a13) 

( )lf t  is called the lth-degree Taylor polynomial approximation of f at a. It is interesting to investigate 

the capability of the last Equation, Eq. (a13), from a function approximation capability point of view. 

Herein, we will prove that Eq. (a13) has the universal approximation capability. In the following, we 

suppose that the input universe of discourse T is a convex set in .  
 

Proposition1. (Universal Approximation Theorem) 

Let ( )f t be a continuous real function on the convex set T in . Then, for each arbitrary 0  , there 

exists a function in the form of 

( )

0

( )
( ) ( )

!

pl
p

l

p

f a
f t t a

p

   (a14) 

Such that 

( )

0

( )
( ) ( )

!

pl
p

t T p

f a
Sup t a f t

p


 

    (a15) 

 

Proof of proposition1: Let to be a set of a continuous function on T in which T is a Convex set in 

the form of (a13). Now, suppose ,1( )lf t and ,2 ( )lf t are given by 

1

2

( )

,1

0

( )

,2

0

( )
( ) ( )

!

( )
( ) ( )

!

il
i

l

i

jl
j

l

j

f a
f t t a

i

f a
f t t a

j





 

 





 (a16) 

we have 

1 2

( ) ( )

,1 ,2

0 0

( ) ( )
( ) ( ) = ( ) + ( )

! !

i jl l
i j

l l

i j

f a f a
f t f t t a t a

i j 

     (a17) 

1 2

( ) ( )

,1 ,2

0 0

( ) ( )
( ). ( ) ( ) . ( )

! !

i jl l
i j

l l

i j

f a f a
f t f t t a t a

i j 

   
     
   
   
 

 

(a18) 

Hence, ,1 ,2( ) ( )l lf t f t    and ,1 ,2( ). ( )l lf t f t  . Furthermore, for any arbitrary,  we can get 

( )

0

( )
. ( ) ( )

!

il
i

l

i

f a
f t t a

i
 



   (a19) 
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Which that is also in the form of (a13). So, according to (a17) to (a19), we can conclude that is an 

algebra. To show that vanishes at no point of T, we simply observe that any function in the form of 

(a13) with ( ) 0f a   and ( ) ( ) 0pf a  for 1,...,p l  has the property of 

  ,  ( ) 0lt T f t    (a20) 

Hence,   vanishes at no point of T. Now, we show that   separates various points on T. Choose the 

parameters of ( )lf t  in (a13) as 1l   and 0a  . Since 1 2t t , then (1) (1)
1 2(0) (0) (0) (0)f f t f f t  

, which can be simplified to 1 2t t .
 
Therefore, the second condition is also verified. Therefore, the 

result follows by Stone-Weierstrass theorem. 

 

6. Indirect Adaptive Taylor series controller 

In this section, actuator saturation compensation is considered to achieve satisfactory tracking control 

of robots as an extended form of [10]. For this purpose, the robust control law is proposed as 

ˆ
i mi i i i rfiu q f u   K E

 
(a21) 

where the parameters are defined exactly similarly to [10]. Substituting (a21) into (a12) and some 

simple manipulation lead to 

ˆ
i i i i i rfie f f u   K E  (a22) 

i mi ie q q  denotes the joint-space tracking error in a decentralized form. It must be emphasized that 

the development of the proposed control law is under the assumption that complete information of 

the actuator and robot dynamic is not available. Furthermore, we don’t utilize the Taylor series 

expression in MIMO form, as mentioned in result 1. With this in mind, a Taylor series expansion will 

be used to represent the uncertainty term ˆ
if  as  

( )

0

ˆ ( )
ˆ ( ) ( )

!

i

kl
k

i

k

f a
f t t a

k

   (a23) 

One can easily represent (a23) as 

ˆ ˆ
i i

T
i f ff  θ ξ  (a24) 

where 1ˆ
i

l
f

θ  is the vector of Taylor series parameters for ˆ
if  and 

if
ξ  is the vector of regressor 

introduced as  

1 ( ) ... ( )
i

T
l

f t a t a    ξ  (a25) 

(0) (1) ( )ˆ ˆ ˆ( ) ( ) ( )
ˆ ...

0! 1! !

i i i

i

l

T
f

f a f a f a

l

 
 
  

θ
 

(a26) 
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Suppose that if can be modeled as 

i i i

T
i f f ff  θ ξ  (a27) 

if
  is the bounded approximation error. The dynamics of tracking error can then be expressed by 

substituting (a24) and (a27) in (a22) to have 

i i i

T
i i i f f f rfie u   K E θ ξ  (a28) 

if
θ  is the parametric estimation error. Using (a28), the state-space representation in the tracking space 

can be formulated by 

i i i i i E Λ E b  (a29) 

Where 

2 1

0 1 0
,       ,       ,       

1 i i i

i T
i i i i f f f rfi

i i i

e
u

k k e
 

    
               

Λ b E θ ξ  (a30) 

It is noted that the procedure of the stability analysis is the same as the one introduced in the proof of 

Theorem 3 in [10], considering this fact that 
if

ξ is defined by (a26). Therefore, the restatement of 

stability analysis in this section is not addressed. 

 

7. Direct Adaptive Taylor series controller 

It must be noted that the direct Adaptive Taylor series controller and the procedure of stability analysis 

are the same as the one introduced in section 3.3 in ref [10], considering this fact that 
if

ξ is defined 

by (a26). Therefore, the restatement of the controller design and the stability analysis is not addressed, 

in this section. 

 

8. Conclusion 

To sum up, the article entitled “On the Taylor Series Asymptotic Tracking Control of Robots” 

comprises a considerable error. Since the second condition of the Stone-Weierstrass theorem cannot 

be correctly established, thus the results obtained cannot possibly be correct.  
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