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Abstract – A power system stabilizer (PSS) is an ancillary device used for improving stability of 

otherwise poorly stable power system. It helps to restore the system back to the operating point 

after disturbances like load changes or faulty situations are withdrawn or smoother transition from 

one to another operating point. Originally, power system stabilizers are installed to add damping to 

local oscillatory modes, which were destabilized by high gain, fast acting exciters. Its property is 

to provide damping torque to reduce the electromechanical oscillations introduced in the system 

under disturbances. In this paper, first, we analyze different types of small signal stabilities of a 

power system using linearized model and then, design a stabilizer for Single Machine Infinite Bus 

(SMIB) system. A comparison between the effect of Linear Optimal Control plus PSS (LOC-PSS) 

and Conventional PSS(CPSS) in terms of either power system responses or its eigen-values due to 

different load condition is reported. Simulation results show the LOC- PSS is robust for such 

nonlinear dynamic system and achieves better performance than the CPSS in damping oscillations. 

The effectiveness of the PSS for different load disturbances is illustrated with simulation carried 

out in MATLAB software. 
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I. Introduction 

     Most adaptive controllers are to predict the low 

frequency electromechanical oscillations resulting from 

poorly damped rotor oscillations. These oscillations 

stability becomes a very important issue as reported in 

[1].The operating conditions of the power system change 

with time due to system's dynamic nature, thus we need to 

track the system stability online. To track the system, some 

stability indicators are estimated from the given data and 

updated as the new data are received. 

    Load changing at power system could induce low 

frequency oscillations. These oscillations may sustain and 

grow to cause loss of synchronization between generators. 

Power system stabilizer (PSS) has been used to damp out 

oscillations in recent years. However, problem with PSS is 

that it may not give adequate damping. In order to achieve 

an optimal performance against small disturbances, the 

coordination between PSS and Thyristor-Controlled Series 

Compensation (TCSC) is needed [2].  

Different methods have been applied to control PSS and 

Power Oscillation Dampers (PODs). Methods such as lead-

lag compensation and PID controller have been studied and 

reported in several papers. Panda, et al [3] compares lead-

lag compensation and PID controller for different 

disturbances. Simulation results show that lead-lag 

compensation gives better performance. Other studies also 

represent that lead lag compensation method offers better 

oscillations damping and system stability in power system 

[2], ,[3], [4], [5]. 

In this paper, a systematic approach to design PSS using 

Linear-Quadratic-Regulator (LQR)technique and Hinfloop 

shaping procedure is presented for two generator infinite 

bus system. The analysis is made to verify the robustness of 

the designed controller using loop shaping procedure. To 

adjust the weights of the controller, Genetic Algorithm 

(GA)has been used. The resulting PSS can stabilize the 

nominal plant. The proposed work demonstrates good 

damping performance of the designed controller; 

furthermore, comparison is made between LQR based PSS 

and Robust PSS [6]. 

In order to improve the dynamic response and achieve 

optimal performance at any loading condition, the Linear-

Quadratic-Gaussian (LQG) optimal control has been 

developed to be included in power system. The LQG is 

superior to LQR controller in terms of small settling time 

and less overshoot and under shoot [7]. 

The rest of the paper is as follows. In section 2, model of 

the system is described. Identification of controllers PSS is 
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III. Controllers 

    Controller is a device fabricated in a chip form, 

analogue electronics, or computer that supervise and 

actually alters the working conditions of a considered 

dynamical system. This paper deals with several types of 

power system controllers discuss below. 

The Automatic Voltage Regulator (AVR) can reduce 

damping torque, a limitation for generator’s stability 

limitation and power grid.  To eliminate the negative effect 

of AVR, one can guarantee the grid stability using a 

feedback from the signal of rotor speed deviations and 

employ it in controlling excitation voltage. This feedback is 

called PSS which improves the grid stability. 

 

A.  CPSS 

The power system stabilizer is used to provide sufficient 

damping to electro-mechanical oscillation in SMIB power 

systems. The CPSS is used to achieve desired transient 

behavior and low steady state error. The input to the 

controllers is speed deviation∆ω. The PSS (in fig. 4)has 

three components. They are: phase compensation block, 

signal washout block and gain block. 

 
Fig. 4:Structure of Conventional CPSS controller 
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compensation. This starts with: [reference]. 
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With the addition of the new Ac matrix of stabilizer, then 

we need to check Ac's eigen-values for computational reasons. 

 

B. LOCPSS 

Here, the problem is to design a stabilizer which provides a 

supplementary stabilizing signal in order to increase the 

damping torque at low frequency oscillations of the system. 

Our design is based on the linear quadratic power system 

stabilizer from the theory of linear optimal control. To 

formulate the problem of stabilization using linear optimal 

control theory, a set of state variables must be selected. 

Then the state equation for the Modified Heffron-Phillip’s 

model is obtained as in [8].In practice, the load reference 

point inputs are zero, due to the system's slow and inertial 
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Generator synchronous 

axis synchronous reactance 
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Fig.6: Schematic diagram of the power system model with 

different power system stabilizers 

 

This section is devoted to the assessment of the proposed 

method. The power system stabilization using the proposed 

CPSS is evaluated by comparing the results with LOC 

method in different loading regimes. To this end, 

simulations are carried out for several general cases. 

Figs7-14 show the rotor speed and angle deviation response 

due to 0.01 pu load and voltage disturbance with and 

without controllers. 

 

 
Fig.7: speed deviation responses due to 0.01 p.u load 

disturbances with and without controllers. At normal 

 
Fig.8: Angle deviation responses due to 0.01 p.u load 

disturbances with and without controllers. At normal 

 
Fig.9: Speed deviation responses due to 0.01 p.u voltage 

disturbances with and without controllers. 

 
Fig.10: Angle deviation responses due to 0.01 p.u voltage 

disturbances with and without controllers. At normal(P=1, 

Q=0.25pu.) 

 
Fig.11: Speed deviation responses due to 0.1 p.u load 

disturbances with and without controllers. At heavy lead 

power factor load (P=1, Q= - 0.8 pu.) 
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Fig.12: Angle deviation responses due to 0.01 p.u load 

disturbances with and without controllers. At heavy lead 

power factor load (P=1, Q= - 0.8 pu.) 

 
Fig.13: Speed deviation responses due to 0.01 p.u voltage 

disturbances with and without controllers. At heavy lead 

power factor load (P=1, Q= - 0.8 pu.) 

 
 

Fig.14: Angle deviation responses due to 0.01 p.u voltage 

disturbances with and without controllers. At heavy lead 

power factor load (P=1, Q= - 0.8 pu.) 

 

 

 

Table.2 :Eigenvalues calculation with and without controllers of single machine power system 
Operating Point 

(P,Q) 

Without control With CPSS control Kc (CPSS) 

Optimal 

With LOC-PSS control 

P=0.5 , Q=0.15pu 

Light load 

-25.3502 +43.3910i 

-25.3502-43.3910i 

-0.0086 + 4.3698i 

-0.0086 - 4.3698i 

-0.7443 + 1.2067i 

-0.7443 - 1.2067i 

-82.7524+42.2252i 

-82.7524 -42.2252i 

-8.0189 +52.7797i 

-8.0189 -52.7797i 

-17.4826 + 0.0000i 

-0.9304 + 4.0298i 

-0.9304 - 4.0298i 

-0.6602 + 1.0878i 

-0.6602 - 1.0878i 

72.3696 -208.4208-211.342i 

-208.4208+211.342i 

-29.0669 + 0.2900i 

-29.0669 - 0.2900i 

-4.57814 - 0.0000i 

-4.90261 + 0.0000i 

P=1 , Q=0.25pu 

Normal Load 

-25.3981+43.4197i 

-25.3981-43.4197i 

-0.0276+4.4908i 

-83.1042+42.5203i 

-83.1042-42.5203i 

-7.8438+52.9552i 

-7.8438-52.9552i 

-17.4114+0.0000i 

42.2727 -205.8553 - 209.2577i 

-205.8553 + 209.2577i 

-30.6178 - 27.3665i 

-30.6178 + 27.3665i 

-4.5706 - 0.0000i 
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-0.0276-4.4908i 

-0.7329+1.2303i 

-0.7329-1.2303i 

-0.9202+4.1278i 

-0.9202-4.1278i 

-0.6507+1.1130i 

-0.6507-1.1130i 

-4.9024 + 0.0000i 

 

 

 

 

P=1 , Q=0.8pu 

Heavy load 

-25.3742 +43.4057i 

-25.3742 -43.4057i 

-0.0721 + 4.0414i 

-0.0721 - 4.0414i 

-0.8012+ 1.2599i 

-0.8012 - 1.2599i 

-81.9757 +41.4421i 

-81.9757 -41.4421i 

-8.7100+52.3036i 

-8.7100 -52.3036i 

-17.7710 + 0.0000i 

-0.83689 + 3.7872i 

-0.8368 - 3.7872i 

-0.6954 + 1.1407i 

-0.6954 - 1.1407i 

46.8591 -206.9961 + 210.9110i 

-206.9961 - 210.9110i 

-32.4219 + 25.2029i 

-32.4219 - 25.2029i 

-4.5745 + 0.0000i 

-4.9025 - 0.0000i 

P=1 , Q=-0.25pu 

Lead PF load 

-25.4388 +43.4435i 

-25.4388 -43.4435i 

-0.0195 + 4.7836i 

-0.0195 - 4.7836i 

-0.6449 + 1.1881i 

-0.6449 - 1.1881i 

-83.6103 +43.0932i 

-83.6103 -43.0932i 

-7.2955+53.3065i 

-7.295 -53.3065i 

-17.2562 + 0.0000i 

-0.9853 + 4.3606i 

-0.9853 - 4.3606i 

-0.5839 + 1.0681i 

-0.5839 - 1.0681i 

35.9179 -203.8850 - 206.9767i 

-203.8850 + 206.9767i 

-29.4115 - 28.6589i 

-29.4115 + 28.6589i 

-4.5639 + 0.0000i 

-4.9023 - 0.0000i 

P=1 , Q=-0.8 

Lead PF and heavy 

load 

-25.5315 +43.4983i 

-25.5315 -43.4983i 

-0.0693 + 5.1648i 

-0.0693 - 5.1648i 

-0.5025 + 1.0998i 

-0.5025 - 1.0998i 

-84.2357+43.7337i 

-84.2357 -43.7337i 

-6.7702 +53.6997i 

-6.7702 -53.6997i 

-17.1274 + 0.0000i 

-1.0590 + 4.6706i 

-1.0590 - 4.6706i 

-0.4745 + 0.9795i 

-0.4745 - 0.9795i 

29.1093 -199.5962 - 202.6505i 

-199.5962 + 202.6505i 

-29.0238 - 29.0523i 

-29.0238 + 29.0523i 

-4.5482 + 0.0000i 

-4.9022 - 0.0000i 

 
 

Table.2 displays the results of digital simulation of 

eigenvalues calculations for power system at different 

operation points with and without controllers. From table.2, 

it is clear that for the system under study, addition of 

stabilizers model improves stability, especially at normal, 

heavy and lead power factor load. The eigenvalues' results 

are confirmed by figures, which express the effect of 

stabilizers on synchronizing and damping torques, and this 

effect is apparent due to positive damping torques observed 

after adding stabilizer.  

 

V. Conclusion 
 

In this paper, first, the effectiveness of power system 

stabilizer is reviewed. Using modified Heffron Phillip’s 

model, different types of power system stabilizers has been 

proposed. The proposed method has been simulated on a 

SMIB energy system conventional controller using 

complete state space model. The results of simulations in 

MATLAB/SIMULINK showed that in the presence of small 

disturbances in the system LOC-PSS is more effective as 

compared to the CPSS conventional controller. The LOC-

PSS gives zero steady state error, smaller overshoot and 

settling time as compared to CPSS. Furthermore, the 

simulation confirmed that the LOC-PSS can provide better 

performance for different types of load as compared to the 

CPSS. It also improves eigenvalues of the system. The 

synchronizing and damping torque coefficients are 

improved with LOC-PSS control in comparison with the 

system without controller. 

 

List of symbols 

T�: Mechanical torque 

T�: Electrical torque 

V,: Terminal voltage 

E�: Inducted emf proportional to field current 

E	
: Generator field voltage 

V��	: Reference value of generator field voltage 

x�: Line reactance 

V : Infinite busbar voltage 
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