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Abstract–In this article, solving and optimizing the problem of forward and inverse kinematics of 
SCARA is studied. This robot belongs to series robots and it has four degrees of freedom. First, we 

specify the coordinate axes for each joint and use it to extract the Danavit-Hartenberg parameters. 

Next, we examineforward kinematics of the robot and obtain the rotation matrices and the 

homogeneous transformation matrix and calculate the forward kinematics of the robot. Next, the 

method of solving the inverse kinematics problem of the robot is studied using different algorithms, 

including Cultural Algorithm, Genetic-Hybrid Algorithm, Gray Wolf Optimization, Firefly 

Algorithm, Ant Colony Optimization and Particle Swarm Optimization.Them, we optimize the 

inverse kinematics of the robot using these algorithms in two ways: fixed point and circular path. 

In the end, the effectiveness of the proposed approaches for solving the inverse kinematics 

problem of the SCARA robot is evaluated with multiple simulations. 
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1. Introduction 
 

Robot arms are devices that consist of a number of 

joints and interfaces and have the ability to be used in a 

variety of ways, just like a human arm. Robotic arms in 

robotics industry and science are generally used in places 

where the human arm is either unable to do it or has 

limitations. Remote areas, the need for high accuracy and 

speed, reducing errors and possible risks are among the 

reasons for using these robotic arms. The use of such robots 

can be summarized according to their final implementation 

in the fields of moving parts, welding, cutting, etc. 

SCARA is an industrial robot arm. The English word 

SCARA means selective adaptation assembly robot arm. 

This robot has four degrees of freedom, which means it has 

four joints. The first, second and fourth joints are rotary and 

the third joint is sliding. The advantages of SCARA robot 

include very fast movement, low space occupation, lower 

cost compared to four degrees of freedom robots, and high 

repeatability. Normally, this robot, like other robots, has 

disadvantages, including a higher price than Cartesian 

robots and the need for inverse kinematics controller 

software to interpolate linear movements [1]. 

Robot kinematics refers to the exploration of robots' 

motion concerning their internal joints, disregarding the 

impact of any external forces or torques acting on the robot 

system. It revolves around measuring the location, pace, 

and acceleration of different components of the robot in 

relevance to its coordinate systems. Robot kinematics 

encompasses two fundamental branches - forward and 

inverse kinematics. Forward kinematics determines the 

orientation and location of a robot's end-effector based on 

joint angles, while inverse kinematics denotes determining 

joint angle requirements to establish the desired location 

and direction of the robot's end-effector. This field plays an 

integral part in robot control, design, and programming. 

Robot kinematics enables engineers to program robotic 

movements and conducts simulation and testing to assure 

the accuracy of robotic movements. The robotic industry is 

experiencing significant progress in automation and 

autonomous robotic systems due to developments in robot 

kinematics. The study of robot kinematics empowers 

researchers and engineers to design and understand efficient, 

secure, and effective robotic systems in various fields of 

application [2,3]. 

Inverse kinematics is a crucial concept in robotics with 

a variety of applications. Its importance can be seen in four 

main areas: controlling robotic movements, planning a 

robot's path, avoiding collisions with the environment and 

other robots, and enhancing human-robot interaction. By 

understanding how the various actuators in a robot arm 
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Fig. 3. SCARA workspace; (a) � � ( display, (b) 3D display 
 Cultural Algorithms (CA) are based on the fundamental 

concept of obtaining problem-solving knowledge, or beliefs, 

from the developing population, and employing that 

knowledge to direct the search process (Algorithm1). CA is 

equivalent to GA, with the difference that instead of 

biological evolution, cultural evolution is used to optimize 

the model. Another difference between these two 

algorithms is the time of evolution, biological evolution 

happens over many years and cultural evolution happens in 

a much shorter time [26]. 

 

Algorithm 1. Cultural Algorithm Require:Require:Require:Require:	Data,	Parameters	1.	BeginBeginBeginBegin	2.	 �	 ← 0	3.	  	 ← GetData)S���+	4.	 T8��*���*7 ← ConvertData) +	5.	 W7X67<Y 	← 	InitializaBeliefSpace) , T8��*���*7+	6.a�CY ← PopulationSpace)�, T8��*���*7+	7. cd�e>f 	← EvaluationPop)�, a�CY+	8.hijklstop	conditiondodododo	9.									�	 ← 	� . 1	10.							opreach	agentrp	11.													Reproduction	by	social	trait	12.													UpdatePop)�, a�CY+	13.							lvr	opw	

14.							cd�e>f ← 	EvaluationPop)�, a�CY+	15.							a�CY 	← 	a�CYx%	16. Accept	a�CY	17. UpdateBeliefSpace)�, W7X67<Y+	18. lvr	hijkl	19. wlz{wv	a�CY, W7X67<Y	
 

 As its name suggests, the Gray Wolf Algorithm (GWO) 

is inspired by nature and performs optimization based on 

the hierarchical structure of gray wolves during hunting 

(Algorithm2). The algorithm starts by randomly initializing 

a population of solutions, with each solution representing a 

wolf. GWO consists of four major steps, which include 

hunting for prey, following the alpha wolf, following the 

beta wolf, and following the delta wolf [27, 28]. 

 

Algorithm 2. Gray Wolf Optimization Require:Require:Require:Require:|�7���6��, S6*, �, }, ~	1.	D← T. �f)�+ � �)�+	2.	 �)� . 1+ ← �f � �.S	3.	 �	 ← 2�. � � �,					�: [2 → 0]	4.	 T	 ← 2. �,					�: [0,1]	5.	 a�C ← InitializeGWOPop)+	6.	 �6��7��	 ← 	FitnessFunction)�+	7.		� ≔ �6���W7���>�	8.		} ≔ �7��� W7���>�	9.		~ ≔ �86� W7���>�	10.hijkl	� = |�7���6��	rp	11.													opreach	agentrp	12.																								Update	positions: α, β, γ	13.													lvr	opw	14.													Update	 �, �, T	15.													Find	�itness	of	all	wolves	16. Update	�, }, ~	17.													� ← � . 1	18. lvr	hijkl	19. wlz{wv	�	
 

 In contrast to genetic algorithms, evolutionary 

programming, and evolution strategies, Particle Swarm 

Optimization (PSO) does not utilize a selection operation 

(Algorithm3). Throughout the duration of the run, which is 

defined as the total number of evolutionary algorithm 

generations prior to termination, all particles in PSO remain 

as members of the population. The updated velocity of the 

particle is determined by considering both its own previous 

best position and the previous best position of its 

companions. Afterwards, the particle flies using its updated 
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velocity. One noteworthy aspect of PSO is that it does not 

rely on the survival of the fittest mechanism, which sets it 

apart from other evolutionary algorithms [29]. 

 

Algorithm 3.Particle Swarm Optimization Require:Require:Require:Require:|�7���6��, S6*,��a	1.	 a�% ← �%	)�����(+	2.	 a�& ← �&	)a�'�@+	3.	 a�/ ← �/	)��'�@+	4.	 a�C ← InitializePSOPop)+	5.	 hijkl	� = |�7���6��	rp	6.	 opweach	particle	arp	7.															��X�7f 	← Evaluation)�f+	8. jo	��X�7��f� = ��X�7)a�'�@+zilv	9. a�'�@ ← �f	10. lvr	jo	11.								jo	��X�7��f� = ��X�7)��'�@+zilv	12.																								��'�@ ← �f	13.								lvr	jo	14.									lvr	opw	15.	 opweach	particle	a	rp	16.															�7X��6�(f 	← De�ineVelocity)a�%, a�&, a�/+	17.�f 	← UpdateParticle)�f, �7X��6�(f+	18.	 	lvr	opw	19.							Update	probabilities	20. lvr	hijkl	21. wlz{wva�'�@	
  

 The Genetic-Hybrid Algorithm (G-HA) is an 

evolutionary algorithm that is formulated based on 

biological methods including(Algorithm4): mutation, 

inheritance, selection principles, etc. and is used for 

prediction and mathematical modeling, to which the term 

hybrid has been added in this article to give a better answer. 

G-HA, designed to replicate specific natural evolutionary 

processes, has become a highly effective stochastic search 

technique that relies on the principles of natural selection 

and genetics. G-HA commences with a set of arbitrary 

solutions called the population, where each individual is 

coded as a chromosome that proposes a solution for the 

problem. These chromosomes evolve through multiple 

iterations or generations. During each generation, the 

chromosomes undergo evaluation based on certain fitness 

measures. As the process progresses through several 

generations, the algorithm converges to the best 

chromosome, signifying the optimal solution. Once the cost 

reaches to 10x#, the Hybrid function is employed to obtain 
final solution[30]. 

 

Algorithm 4.Genetic-Hybrid Algorithm 1.	 �loat, int, bin, etc.← coding	2.	 T��� ← CostFunction	)+	3.	 a�C ← GeneratePopulation)+	4.	 hijklterminating	conditionrp	5.	 	 	 	 	 Selection	operator	 → soft	or	hard	mode	6.	 jon���not	generatezilv	7.																Roulette	wheel, Rank, Top, etc.	8. New	generation	 9. Apply	crossovr	10. Apply	mutation	11.									lvr	jo	12. Apply	Hybric	Function 13.									Find	W7��¢>�@	14. lvr	hijkl	15. wlz{wv	W7��¢>�@	
 

 The Firefly Algorithm (FA) is a meta-heuristic algorithm 

that originates from the communication between fireflies 

(Algorithm5). The cooperation and competition of each less 

intelligent member of the population with another creates a 

higher order of intelligence. FA focuses on generating new 

solutions within a search space through its heuristic, known 

as the 'lower level', and selects the optimal solution for 

survival. To prevent the solution from being trapped in local 

optima, the algorithm utilizes randomization in its arch 

process. Additionally, the local search function continually 

improves a candidate solution until it reaches a local 

optimum [31]. 

 

Algorithm 5.Firefly Algorithm Require:Require:Require:Require:|�7���6��, S6*	1.	 a�C ← InitializeFAPop)+	2.	 T��� ← CostFunction)�+	3.	 | ← IntensityPop)T���+	4.	 hijkl	� = |�7���6��	rp	5.	 opw	6 	 1: �rp	 6. opw	£ 	 1: �rp	7. jo|¤ = |�zilv	8. Fire�ly)£, S6*+ ← Fire�ly)6, S6*+	9. lvr	jo	10.								Evaluation	new	solution	11.																					Update	intensity	12. lvr	opw	13. lvr	opw	14.	 Find	the	current	W7���>�	15. lvr	hijkl	16. wlz{wv	W7���>�	
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 According to the behavior of ants in finding the closest 

path to food, the Ant Colony Optimization (ACO) has been 

formed (Algorithm6). Ants randomly follow paths to find 

food and leave a substance called Pheromone so that the 

next ants reach the food, but on the way back to the nest, 

they may follow a non-directive path, and the higher the 

amount of Pheromone accumulated, ants are more attracted 

to it. In the same way, ACO employs a comparable process 

to solve optimization problems [32]. 

 

Algorithm 6.Ant Colony Optimization Require:Require:Require:Require:|�, S6*, ¥, �, }, ��a	1.	 a�C�'�@ ← CreatSolution)S6*+	2.	 T���e>f�'�@ ← Cost)�¦+	3.	 a8 ← InitializationPh)T���e>f�'�@+	

4.	 hijklStop	conditionrp	5.	 opw	6 	 1: Itrp	6. �� ← �tepwiseMovement)�, }, a8, S6*+	7.															T���¨� ← Cost)��+	8. jo	T��e>f�'�@ ≥ T���¨�zilv	9.																				T��e>f�'�@ ← T���¨�	10.								a�C�'�@ ← ��	11.													lvr	jo	12. lvr	opw	13. OldPh)a8, ¥+	14.	 UpdatePh)a8, �� , T���¨�+	15. lvr	hijkl	16. wlz{wv	a�C�'�@ , T���e>f�'�@	
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Fig.4.The cost function for 200 iterations; (a) CA , (b) GWO, (c) PSO, (d) G-HA, (e) FA, (f) ACO

6. Discussion 

 

 This section includes tables and graphs generated from 

MATLAB software 1 during the calculation of inverse 

kinematics. Fig. 4 displays graphs of the variant cost 

function after 200 iterations. Each of the algorithms 

includes different parameters, such as the distribution of 

search agents, population count, and the percentage of 

different tasks, among others. Two parameters that have a 

significant impact on the execution time are the lower band 

                                                           
1System info: Intel(R) Core(TM)i3 CPU, 2.4GHz, 4GB RAM 

and the upper band. These parameters are used to limit the 

search environment. 

 Figure 4 displays the cost functions for various 

optimization algorithms. In these graphs, the cost function 

for CA shown in Fig. 4(a) displays a continuous downward 

path without any stops, indicating a consistent decrease in 

the value of the cost function. In G-HA, as shown in Fig. 

4(d), a broad solution space is first evaluated. Once theerror 

reaches the 10x/  threshold, the Nelder-Mead Simplex 
algorithm is employed to obtain the final solution. Similarly, 

the cost function for FA shown in Fig. 4(e) also exhibited 
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many changes but maintained a general downward trend. 

On the other hand, GWO shown in Fig. 4(b) experienced 

horizontal stops in some iteration, indicating that the cost 

function remained constant during these iterations. In the 

case of PSO and ACO shown in Fig. 4(c) and Fig. 4(f), 

respectively, the cost function trended downwards in a 

continual fashion. 

 To facilitate comparison of the different algorithms used, 

Table 2 displays the recorded coordinate error, cost function 

values, and execution times for different population sizes. 

As expected, the execution time of the algorithms increases 

with an increase in population size. The coordinate error 

values in the table are expressed in meters, while time is 

measured in seconds. 
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Fig.5. Graph of execution time in mentioned algorithms from Table 

 

 The inverse kinematics for a single point in the SCARA 

workspace was optimized using different populations of the 

specified algorithms. Now, we will assess each algorithm's 

response to the robot operator's movement along a circular 

path in the workspace, as shown in Fig. 6. This route covers 

11 points, each with its own specific coordinates, listed in 

Table 3. To ensure a fair comparison between them, each 

point was optimized by the algorithms under the same 

conditions. 
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Fig. 6. Circular path in the SCARA workspace 

 

 The charts representing absolute value of�, (, and � 
errors, as well as the cost function, utilize a logarithmic 

vertical axis due to the small values of the answers and the 
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Fig. 7. Algorithms results for circular path; (a) Absolute value of �-error, (b) Absolute value of (-error, (c) Absolute value of �-error, (d) Cost function, 
(e) Execution time 
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significant differences in the errors. This choice allows for 

better visualization and diagnosis. Each graph depicts the 

highest value with a blue line at the top of the rectangle, the 

lowest value with a blue line at the bottom of the rectangle, 

and the average value with a red line in the middle of the 

rectangle. 

 The first analysis pertains to the absolute value of � 
error, as shown in Fig. 7(a), which presents the algorithms' 

errors for the robot's selected path points listed in Table 3. 

This graph reveals that the average response of the 

algorithms from the lowest error to the highest error is: 

ACO, CA, PSO, G-HA, FA, and GWO. 

 Similarly, Fig. 7(b) and Fig. 7(c) demonstrate the 

absolute value of ( and � errors, respectively, with the 
only difference being the change in the position of CA and 

ant ACO. In Fig. 7 (d), according to the cost function 

expressed in (8), the average response of the CA and ACO 

is almost identical. 

 Finally, Fig. 7(e) illustrates the execution time of each 

algorithm for the 11 selected points, presented in the 

following order of algorithm time: GWO, CA, G-HA, PSO, 

ACO, and FA. 
Table 3. Points in circular path 

Axis x y z 1	 �14	 7.75	 �6	2	 �8	 13.85	 �6	3	 0	 16	 �6	4	 8	 13.85	 �6	5	 14	 7.75	 �6	6	 16	 0	 �6	7	 14	 7.75 �	 �6	8	 8	 �13.85	 �6	9	 0	 �16	 �6	10	 �8	 �13.85	 �6	
 

Table 2.Comparison of algorithms 

Agents Algorithms |c�����|)*+ |c����«|)*+ |c����|)*+ Cost Time (s) 

20	
CA 6.0518 × 10x/	 2.2313 × 10x/	 8.6302 × 10x#	 4.2349 × 10x	 0.24493	
GWO 5.1071 × 10x#	 1.4031 × 10x#	 7.6245 × 10x#	 8.6185 × 10x®	 0.27279	
PSO 1.8112 × 10x%$	 2.7348 × 10x%$	 8.1221 × 10x%%	 1.1419 × 10x%¯	 0.53402	
G-HA 8.3137 × 10x°	 5.3925 × 10x°	 1.4150 × 10x°	 2.1700 × 10x%/	 6.82576	
FA 6.7710 × 10x±	 4.0840 × 10x±	 1.0400 × 10x±	 2.9151 × 10x%&	 0.69410	
ACO 2.8479 × 10x%/	 3.4900 × 10x%$	 5.7465 × 10x%$	 4.5203 × 10x%¯	 0.42001	

40	
CA 2.775 × 10x%®	 0	 0	 7.7037 × 10x/#	 0.28883	
GWO 3.9048 × 10x#	 7.3600 × 10x#	 1.1550 × 10x/	 2.0282 × 10x±	 0.34990	
PSO 1.8920 × 10x%$	 7.8578 × 10x%%	 2.6544 × 10x%&	 4.1978 × 10x&$	 1.06167	
G-HA 1.0807 × 10x®	 1.6725 × 10x°	 6.3240 × 10x¯	 1.2600 × 10x%/	 6.86675	
FA 5.3260 × 10x±	 3.4680 × 10x±	 3.2500 × 10x®	 5.5948 × 10x%/	 2.95924	
ACO 3.7062 × 10x%&	 3.80451 × 10x%&	 6.5702 × 10x%/	 2.8642 × 10x&/	 0.74903	

60	
CA 0	 2.7755 × 10x%®	 5.5511 × 10x%®	 3.8518 × 10x//	 0.46891	
GWO 3.4591 × 10x#	 2.3062 × 10x#	 6.0688 × 10x/	 3.7003 × 10x	 0.38846	
PSO 6.0043 × 10x%&	 4.8507 × 10x%%	 1.1871 × 10x%$	 1.6481 × 10x&$	 1.54468	
G-HA 2.1609 × 10x®	 3.7832 × 10x°	 1.3569 × 10x®	 3.8800 × 10x%/	 7.26907	
FA 8.1540 × 10x®	 3.7400 × 10x®	 4.0580 × 10x®	 9.6949 × 10x%/	 6.12580	
ACO 2.3869 × 10x%	 6.7890 × 10x%#	 9.0843 × 10x%#	 1.2867 × 10x&±	 1.28537	

80	
CA 0	 2.7755 × 10x%®	 0	 7.7037 × 10x/#	 0.51326	
GWO 1.2172 × 10x#	 1.4443 × 10x#	 1.6078 × 10x/	 2.6208 × 10x±	 0.47053	
PSO 2.6821 × 10x%&	 6.4868 × 10x%&	 1.7253 × 10x%%	 3.4694 × 10x&&	 2.15798	
G-HA 6.8448 × 10x°	 2.3166 × 10x®	 2.1532 × 10x®	 1.5900 × 10x%/	 7.04521	
FA 6.9800 × 10x°	 2.8630 × 10x®	 6.2980 × 10x®	 4.8352 × 10x%/	 10.62385	
ACO 1.8318 × 10x%	 7.5495 × 10x%	 3.3306 × 10x%±	 6.0461 × 10x&¯	 1.87799	

100	
CA 2.775 × 10x%®	 5.5511 × 10x%®	 3.6082 × 10x%±	 1.3404 × 10x/%	 0.63141	
GWO 1.4823 × 10x#	 1.4343 × 10x#	 3.1004 × 10x/	 9.6551 × 10x±	 0.50475	
PSO 8.6114 × 10x%&	 1.4992 × 10x%%	 8.4837 × 10x%/	 2.9964 × 10x&&	 2.58533	
G-HA 4.5212 × 10x¯	 8.5804 × 10x¯	 3.6674 × 10x°	 2.7000 × 10x%/	 7.66663	
FA 7.5200 × 10x°	 2.4940 × 10x®	 4.3770 × 10x®	 2.5940 × 10x%/	 17.0053	
ACO 0	 0	 5.5511 × 10x%®	 3.0814 × 10x//	 2.52019	
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7. Conclusion 

 

 Based on Fig. 5, which is drawn using the final column 

of Table 2 and considers a fixed point with the change of 

population as the working criterion, it is apparent that the 

FA and G-HA algorithms lack time optimization attributes, 

and thus they were excluded from comparison. Moreover, 

the GWO and CA algorithms are top-performing options in 

terms of execution time optimization. However, when it 

comes to coordinate error, the CA, PSO, and ACO 

algorithms are preferable. Although the value of the cost 

function is satisfactory in all of the algorithms except for 

GWO. 

 Evaluating these three performance criteria together, we 

can conclude that the CA algorithm is the best among the 

existing algorithms for the SCARA's inverse kinematics 

optimization. Using a fixed population, as listed in Table 3, 

CA algorithm outperformed ACO in terms of time chart 

while both algorithms achieved the same amount of 

coordinate error. Therefore, CA demonstrated relative 

superiority over other algorithms in both analyses and 

yielded the best results for optimizing robot kinematics. 
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