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Abstract– Fuzzy modeling is a relatively new system modeling method with a proven efficiency 

record in various fields. Although zero- and first-order fuzzy systems are common due to their 

simplicity, their linear structure faces challenges when modeling nonlinear systems with state-

variable interaction. These challenges include an increase in the number of rules and the inability 

to stabilize highly nonlinear systems. One solution is to use high-order fuzzy systems, which have 

a nonlinear structure and can represent model input interactions. In previous research, high-order 

fuzzy modeling has been investigated for static and nonlinear systems based on data, but such 

modeling has not been applied to dynamic systems with nonlinear nature which is a model of i

ndustrial processes. The present paper proposes a novel fuzzy structure inspired by the Taylor 

series expansion for dynamic systems with nonlinear state-space equations. This structure has a 

high degree of freedom in modeling complex nonlinear processes and can be adapted to the state-

space equations of the system. The main novelty of this method is the conversion of a nonlinear 

high-order fuzzy structure into a set of first-order fuzzy structures. Another advantage is the ability 

to calculate the coefficients of the high-order fuzzy system from the Taylor series coefficients of 

the dynamic system’s model. Fuzzy systems have made various applications possible in the field 

of approximation. The present paper also proves the approximation ability and convergence of the 

proposed structure and determines its convergence criteria. 
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1. Introduction 
 

Process control is a major field of automation and 

control. Nonlinearities and other complexities in industrial 

processes necessitate more advanced controllers. This is 

due to their role in reducing production costs, system 

stabilization time, and production waste. Intelligent control 

techniques require suitable models based on real system 

data so that both model accuracy can be improved and 

model stability can be demonstrated  [1-3]. Among 

modeling methods, fuzzy models are a relatively new 

technique with a proven history of efficiency in various 

applications [4-7]. The main advantage of fuzzy systems is 

in the modeling and control of nonlinear systems. However, 

an increase in the complexity of these systems leads to an 

increase in the number of rules needed to reduce modeling 

errors. This problem is intensified with the increase in input 

interactions in such systems. Although zero- and first-order 

fuzzy systems have shown good modeling performance in 

numerous cases, they may sometimes face problems. 

Specifically, in systems where the training data originate 

from a complex nonlinear process and there is considerable 

interaction between the input variables, the number of 

considered fuzzy rules must be larger in order to achieve a 

satisfactory estimation accuracy. In this case, the cluster 

radius is assumed to be sufficiently small, and the data are 

clustered in regions where the system behavior is nearly 

linear, leading to a larger number of fuzzy rules. This issue, 

in turn, causes the fuzzy system parameters (the value of 

which must be found) to increase. As a result, determining 

these parameters and simulating the resulting system 

becomes more difficult and time-consuming  [8-10]. In 

recent years, high-order fuzzy systems have been proposed 

to deal with this problem. A high-order fuzzy system refers 

to a Sugenofuzzy system where the function in the 
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consequent of the rule has an order higher than 1  [11- 13]. 

The presence of these nonlinear terms in the high-order 

structure, which include products of the inputs, allows the 

Sugeno fuzzy system to retain its benefits while performing 

estimations with fewer rules but with the same accuracy as 

zero- and first-order systems. In other words, higher-order 

systems exhibit smaller estimation errors for a given 

number of rules[14]. In addition, a reasonable number of 

rules increases the interpretability and transparency of the 

fuzzy system. Also, by paying attention to the rules and the 

corresponding fuzzy sets, one can better understand the 

phenomenon being modeled while performing estimations  

[12-17]. 

Nonlinearities and other complexities in industrial 

processes necessitate more advanced controllers. This is 

due to their role in reducing production costs, system 

stabilization time, and production waste. Various fuzzy 

system training methods have been used in the literature 

with the aim of achieving a model that both has a high 

estimation accuracy and minimizes the complexities of 

computing the fuzzy model coefficients and membership 

functions  [4-6,18-20]. 

 Second-order (quadratic) fuzzy models for nonlinear 

systems were proposed by [9, 21, 14]. In [9, 22, 23], a 

second-order fuzzy model was used to predict time series, 

such as the Mackey-Glass series. The hierarchical 

representation of high-order fuzzy systems via lower-order 

systems was demonstrated in [21]. Also, the approximation 

accuracy of smooth fuzzy models was discussed in  [24]. 

Another application of second- and higher-order systems 

was demonstrated in [25, 26, 14]. These studies included a 

fuzzy-based model predictive control system and an 

optimal controller design for maximum power tracking 

implemented on a solar electricity generation process using 

photovoltaic cells. The results were compared to those in 

other studies. Takagi-Sugeno-Kang (TSK) fuzzy systems 

were used in [27] for predicting short-term electricity prices. 

In [28], a fuzzy model predictive controller using kernel 

ridge regression based on the TSK fuzzy model (TS-KRR) 

was proposed for discrete-time nonlinear systems. This 

system approximates an unknown nonlinear system by 

training the fuzzy parameters of the Takagi-Sugeno (TS) 

model from the input-output data. Then, a generalized 

model predictive controller is created via the TS-KRR 

combination and is simulated on a continuous stirred tank 

reactor (CSTR). The results were compared with those of 

the adaptive TS-KRR model predictive controller. A 

discrete generalized fuzzy model predictive controller using 

the TS fuzzy model based on multi-kernel least-squares 

support vector regression (MKLSSVR) was introduced in  

[29]. The reliability of this method in the nonlinear CSTR 

system was investigated. A novel learning algorithm based 

on the unstable Kalman filter was proposed in  [30] for 

identifying the coefficients of the TS fuzzy model. In [31], 

the nonlinear model of a flying object was converted to a 

fuzzy polynomial model using fuzzy logic. Based on this 

model, a polynomial fuzzy controller was designed in the 

discrete-time domain for tracking the reference model. In 

this method, the designed controller guarantees system 

stability within the considered speed range based on 

Lyaponuv's stability theory. Another application of high-

order fuzzy models is in forecasting enrollments [22]. 

Observer-based tracking control was designed for a class of 

polynomial fuzzy systems without disturbance in [32] and 

with disturbance in  [33].  

Since stability is required in every nonlinear system 

before a controller can be designed, the proof and 

conditions of stability in high-order fuzzy systems are 

among the topics addressed by numerous studies. stability 

in nonlinear fuzzy systems was investigated in  [34-38], 

where Lyapunov-based methods with second-order or 

piecewise-linear Lyapunov functions were used for stability 

analysis. In [39], a novel criterion based on the second 

Lyapunov method for the stability of high-order TSK 

dynamic fuzzy systems was proved using a theorem, and 

the challenge was resolved.  

 Past research has not presented any high-order fuzzy 

system with the mentioned specifications for nonlinear 

dynamic systems. Almost all previous studies have 

evaluated and modeled fuzzy structures on static and data-

based systems with available input-output data  [21, 31, 

40]. Furthermore, researchers have utilized optimization 

and intelligent methods or a combination of the two for 

training high-order fuzzy models  [18, 7, 20, 11, 4]. The 

present research aims to introduce a novel high-order fuzzy 

structure for modeling dynamic systems described with 

nonlinear state-space equations. Inspired by the Taylor 

series expansion, this structure has a high degree of 

freedom in modeling such processes and can be adapted to 

the state-space equations of the system. 

Based on high-order fuzzy systems, a new structure for 

fuzzy modeling is proposed and analyzed in this paper. The 

proposed structure has a high degree of freedom for 

modeling complex nonlinear processes while being capable 

of adapting to the Taylor series expansion of the dynamic 

equation of the process. In this method, a high-order fuzzy 

system is converted to a set of zero- and first-order fuzzy 

structures so that the advantages of high-order fuzzy 

systems can be used in conjunction with the computational 

simplicity of low-order fuzzy systems. Another innovation 
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of this work is adapting the Taylor series expansion of the 

differential equation of the system X� = F�X, u�to its high-

order fuzzy model such that the two have corresponding 

terms. This series can be easily modeled using zero-order 

and first-order fuzzy systems. By adding the corresponding 

terms to second-order terms, a fuzzy structure closely 

resembling high-order structures can be created. Using this 

structure can reduce the number of fuzzy rules while 

increasing the modeling accuracy. 

Therefore, this paper first addresses the nature of this 

fuzzy model and then proves its approximation ability using 

the Stone–Weierstrass theorem. The difference (state) 

equations of dynamic systems using the proposed model are 

addressed in the following section. Next, a method is 

developed for calculating the coefficients of the high-order 

fuzzy model from its Taylor series expansion. Finally, based 

on the stability analysis method used by [39], the stability 

of an inherently nonlinear system is simulated using a high-

order fuzzy model. The proposed model can be applied to a 

class of nonlinear systems whose equations can be written 

in first-order state form and can be expanded using the 

Taylor series.  

The paper is organized as follows: Section 2 will introduce 

necessary preliminaries and theorems for the present study. 

In sections 3 and 4 the theoretical results  and 

Mathematical proofs of proposed work are discussed. The 

simulations results are given in section 5 to show the merits 

of the proposed approach. Finally, summarizing the 

presented  study along with suggestions for Future research 

works will be in section 6 

. 

2. Prerequisite Definitions and Theorems 

If the “then” rules of a first-order fuzzy system consist of 

a set of discrete-time state equations, such asx �k + 1�  =A�x �k� + B�u �k�, it is called a dynamic fuzzy system [41]. 

The general form of the rules in these systems is as follows: 

  if x� ∈  D�� & x� ∈  D�� & … . & x� ∈  D��  then x��k + 1� =A��x�k� + B��u�k�                           (1)                                               

    

x�k� =  x��k�x��k�⋮x��k�",   u�k� =  u��k�u��k�⋮u#�k�"         (2) 

 

where l = 1,2, … , N is the rule number, and n is the 

number of state variables. Also, x �k� is known as the 

vector of state variables, and u �k�  denotes the input 

vector of the state equations, where u'  is the i th input 

vector, and m is the number of inputs. Moreover, D'� is 

the membership function of the open-loop system variables. A��  and B��  represent n ×  nandn ×  m  matrices 

respectively, where n is the number of state variables, and m is the number of inputs. The method used to calculate 

the matrices A�� and B�� is described in Section 3. If the 

system is closed-loop and the inputs are excited by a fuzzy 

state controller, such that the membership function of the lth rule of the controller is S'�, the lth rule of the closed-loop 

fuzzy system can be described as follows  [41]: 

  if x� ∈  T��& x� ∈  T��& … . & x�∈  T��   then  x��k + 1� = A�x�k� 
(3) 

T'� and A� in this rule depend on the membership functions 

and parameters of the open-loop system and the controller. 

In other words, T'� is equal to D'� and S'�[41]. (A “fuzzy” 

and is implied here).Based on fuzzy inference rules, x�k + 1� can be written as follows: 

 x�k + 1� = ∑ /0�12��304056∑ 304056 = ∑ 70/�1�304056∑ 304056        (4) 

where x��k + 1� is the output of the lth rule, N is the 

total number of fuzzy rules, and v� is the weight or effect 

of the lth rule, which is determined according to the degree 

of membership of the state variables �x'� in the fuzzy sets 

of the lth rule: v� = ∏ μ;<0�x'��'=�         (5) 

Also, μ;<0�x'� is the membership function of the fuzzy 

set  T'�. It is assumed that the controller and open-loop 

system both have l rules and that the weights are identical. 

Based on the above definitions, the following fuzzy 

model is proposed. 

 

2.2Fuzzy model proposed for High-order TSK 

dynamic nonlinear systems 

 

The main idea behind this model was inspired by the 

work in [39],  [21], and  [14]. High-order fuzzy systems 

are a type of TSK fuzzy system where the consequent part 

of the rules consists of polynomials of the input variables 

and has an order higher than 1. These fuzzy systems are 

known as high-order Takagi-Sugeno-Kang (HOTSK) 

systems. 

Definition 2.1  [39]: The general form of the lth fuzzy 

rule of an HOTSK system of order R  with n  state 

variables is as follows: If x� is A�� &x� is A�� & ⋯ &x� is A�� , then y� =∑ CaD6,DE,⋯,DF� Gx�D6x�DE ⋯ x�DFD62DE2⋯2DFHID6,DE,⋯,DFJK            (6) 
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In this equation, a polynomial of degree R is in the 

consequent of the rule, and l  is the rule number. As 

demonstrated in [39], the above system can be represented 

by a number of zero- or first-order fuzzy systems. This 

concept is used in the simulation section of this paper for 

implementing the controller. Based on the above definition, 

dynamic HOTSK systems can be expressed as follows. 

Definition 2.2: Assume M'�x� to be of the following 

form: M'�x� = x�D�x�D� … x�D�   

                            (7)  

Mi(x) is a monomial with a maximum degree of R, 

where R ≥ j� + j� + ⋯ j�. 

Now, the l th rule of a closed-loop dynamic HOTSK 

system is defined as follows: if x� ∈  T��& x� ∈  T��& … . & x� ∈  T��      then x��k + 1� = ∑ M'�x�A'� x�k�O'=�                 (8) (8) 

In this equation, Q is the number of rules in the “then” 

part of the fuzzy rules, and M'�x� is a monomial of degree R − 1. The A'� s are n × n matrices and can be determined 

via various identification methods. In the present work, 

these matrices are computed using the Taylor series 

expansion of the nonlinear state equations around the 

equilibrium point of the system. In the simulation section of 

this paper, this expansion is performed around points the 

coordinates of which mostly belong to the fuzzy sets T�� , T�� , ⋯ , T�� . Based on Eq. (4), the fuzzy inference of such 

a system results in the following: 

 x�k + 1� = ∑ ∑ R<�/�7<0/�1�30S<564056 ∑ 304056              (9) 

As can be seen, the proposed representation (8) is a 

decomposition of the nonlinear state-space equations in the 

matrix A'�. As explained in [39], these matrices are key 

factors in determining the stability criterion of the proposed 

dynamic HOTSK system. The numerical example provided 

in the simulation section will demonstrate the applications 

of Eq. (8). 

References [14, 42] have addressed model validation, 

several examples of quadratic high-order fuzzy model 

implementation, and a data-oriented nonlinear static system 

and have compared their methods to various techniques in 

terms of the number of rules, number of training iterations, 

and training duration. However, the present work targets 

nonlinear dynamic systems, and the coefficients of the 

proposed higher-order fuzzy model are calculated using the 

Taylor series expansions. Naturally, the cost of fuzzy 

computations is higher than other methods due to the 

complexity of fuzzy relationships. 

2.3 Proof of the approximation ability of the proposed 

fuzzy model and its convergence criteria 

This section proves the approximation ability of the 

proposed fuzzy model and examines its convergence 

criteria. 

For simplicity, the symbol F�x� is used to represent the 

structure proposed for the consequent part of the fuzzy rules, 

and its expansion is expressed as follows:  F�x� = ∑ f'�x�M'�x�,    q = �I2��!I!�!V'=�        (10) 

  where, as already mentioned, the M'�x�’s represent 

monomials with a maximum degree of R , the f'�x� ’s 

denote a group of output obtained from a zero-order TSK 

fuzzy system with input variables x'  [42], andn is the 

number of state variables (inputs to the fuzzy model). First, 

it must be proved that F�x� can be a linear approximator 

and that conditions may be found where F�x�  can 

converge to a set of raw data or dynamic equations of the 

nonlinear system g�x�. 

In order to examine the approximation ability of the 

proposed structure, the Stone–Weierstrass theorem  [43] is 

used. One must consider the following conditions for using 

this theorem: 

1. In the f'�x�’s, all the input membership functions must 

be considered to be Gaussian. 

2. Fuzzification must be of the single-tone type. 

3. The inference engine must be of the product type. 

   The following proves that F�x� satisfies the above 

theorem. To this end, Points 1, 2, and 3 of the Stone–

Weierstrass theorem are proved for it. In other words, if Zis 

considered a set of functions in the form of F�x� for the 

space R�, where n is the number of variables in the vector X  (assuming FY , FZ  to be two members of Z  with a 

degree of n),  FY = ∑ fY<�x�M'�x�,V'=K FZ = ∑ fZ<�x�M'�x�V'=K  

     (11) 

1. Z is an algebra since 

A:  Z is closed with respect to addition. 

It must be shown that FY + FZ and FY. FZ are members 

of Z. FY + FZ = ∑ fY<�x�M'�x�   +V'=K ∑ fZ<�x�M'�x�V'=K =∑ [�'=K fY<�x� + fZ<�x�]M'�x�             (12) 

Therefore, it is sufficient to demonstrate that fY<�x� +fZ<�x� can be expressed as the output of a 

 

zero-order fuzzy system, such as f]<�x� , where f]<�x� = fY<�x� + fZ<�x�. 

This has been shown in [41]. In addition, FY. FZ = ∑ fY<�x�M'�x�  . ∑ fZ<�x�M'�x�V'=K =V'=K
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∑ [∑ [fY<�x�M'�x��D=K�'=K fZ^�x�MD�x�]] =∑ [∑ [VD=KV'=K fY<�x�fZ^�x�M'�x�MD�x�]]           (13) 

In this equation, M'�x�MD�x�  is the product of two 

monomials with a maximum degree of R . One may 

consider this product a monomial and write M'�x�MD�x� = M� 1�x�   (14) 

Where M� 1�x� is a polynomial with a maximum degree 

of 2R . Overall, considering the repetitive cases of the 

number of monomials generated in the form of M� 1�x�, 2q = 2 ��I2��!�I!�! , and the number of non-repetitive terms is �!��I�!��2�I�!. 
Now, it must be proved that the product of two fuzzy 

systems fY^�x�. fZ^�x� is itself a fuzzy system. This has 

been done in [41] and will not be repeated here. One may 

write f_1�x� = fY<�x�fZ^�x� 

where f_1�x� is a new fuzzy system with the properties 

mentioned for fY<�x�  and fZ^�x� , and the subscript k 

varies as stated for M� 1�x�. Hence,  FY. FZ = ∑ f_1�x�M� 1�x��V1=�            (15) 

In this sum, a number of the M� 1�x�’s are repeated, which 

does not affect the proof anyway. 

One may conclude that if FY, FZ ∈ Z, then �FY + FZ� ∈Z  and FY. FZ ∈ Z . Regarding the scalar product, if one 

assumes A to be a real number, then AFY  ∈ Z, AFY = ∑ AfY<�x�M'�x�V'=K           (16) 

where AfY<�x� is also a fuzzy system with the same 

specifications as fY<�x�. The proof is provided in [41]. 

Hence, it was shown that  Z is an algebra. 

2. Z is a separator since 

It is sufficient to provide an example where if x, y ∈ R� 

and x ≠ y, 

Then, F ∈ Z and F�x� ≠ F�y�. 

If one assumes at least one non-zero element, such as x, 

exists in X and defines the following: F�x� = xf��x� 

then F ∈ Z. Now, if f� is defined according to  [41], 

then F�x� ≠ F�y�. 

3. Z is not exactly zero at any point. 

It is sufficient that one defines F�x� = f��x� and the 

consequents of all the rules are greater than zero at f��x�. 

In this case, since ∀ X ∈ R#, f��x� ≠ 0 ⇒ F�x� ≠ 0 

 one may conclude that the proposed structure F�x� = ∑ f'�x�M'�x�V'=�  satisfies the Stone–Weierstrass 

theorem. Therefore, for every function continuous on R�, 

such as  g�x�, providing X ∈ R�, one can find anF�x� in 

the form of Eq. (11), the maximum difference of which 

from g�x� is less than the arbitrary value ε. In other words, sup|F�x� − g�x�| < gx ∈ U  

Therefore, F�x� can converge to any function that is 

continuous on R�. Hence, high-order fuzzy systems are 

approximators. 

2.4 Representation of the difference equations (state 

equations) of dynamic systems by the proposed model 

If the model of the system under study is a dynamic one 

and the system’s behavior is described by one or more 

difference equations, such that the discrete-time dynamic 

equations of the system are as follows, ix�k + 1� = G�x�k�, u�k��y�k� = H�x�k�, u�k�� l            (17) 

where k  is the calculation step number, x�k�  is the 

state variable vector, u�k� is the system input vector at the k th instant, G and H  are continuous and differentiable 

vector functions dependent on x�k�, u�k�, and y�k� is the 

output of the system, then the Taylor expansion of the G andH  functions can be considered for modeling the 

difference form of the system using a high-order fuzzy 

model (assuming the values of the state variables to be 

available). 

For this purpose, the following must be taken into 

account: 

If F�z�: R� → R and z ∈ R�  is a continuous and 

infinitely differentiable function and a ∈ R�  is a point at 

which F�a�  is defined, the F th-order Taylor series 

expansion of m  about a  can be expressed as follows  

[44]: F�z� ≅ ∑ qr�s�Y��t! �z − a�t|t|H#   (18) 

If the following definitions are considered in the above 

expression: |α| = α� + α� + ⋯ + α�            (19) α! = α�! α�! αv! … α�! 
and assuming a and z to be vectors of the following 

form: 

a =  a�a�⋮a�
" , z =  z�z�⋮z�

"   (20) 

then �z − a�t = �z − a��t6�z − a��tE … �z − a��tF 

where α�, α�, … , α� are integers whose sum must be less 

than or equal to m:  |α| ≤ m 

Now, considering these definitions, one may assume 

that if the vector functions GandH are written as follows:  

G =  G�G�⋮G�
" , H =   H�H�⋮H�

"   (21)
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then each function G' or H'  can be expanded similarly 

to F�z�  up to the desired degree based on the Taylor 

expansion. Put more accurately, if z = zx�k�u�k�{    (22) 

one may write   

GCx�k�, u�k�G = G�z� =  G�G�⋮G�
" , G'�z� ≅

∑ qrC|<�Y�Gt! �z − a�t|t|}~'=�,�,…,�           (23) 

The point a here is the point at which the system is 

modeled and can be an operational point or an equilibrium 

point of the system. Expanding the above expression, one 

gets G'�z� ≅ ∑ U�α�V�z�|t|}~             (24) 

where the V�z� ’s are monomials in terms of the 

components of the vector z, and the U�α�’s are parameters 

in terms of α. Therefore, the components of the vector 

function G�z� may be expressed as follows: G'�z� = U��α�V��z� + U��α�V��z� + ⋯        ≡∑ f'�z�M'�z�V'=�     (25) 

In other words, if sufficient data is available from 

the G' �z� ’s and H' �z� ’s, one can approximate them as ∑ f'�z�M'�z�V'=�  using the proposed model. In this 

expression, z consists of the inputs and the state variables, 

as defined in Eq. (22), and the f'’s and M'’s are the outputs 

of the zero-order fuzzy system and the monomials defined 

in Eq. (7). 

3. Approximation of The State-Space Equations of a 

Nonlinear Dynamic System Using The 2
nd
 Degree Taylor 

Expansion 

One important method of linearizing nonlinear methods 

is to use the Taylor series expansion of the system’s model 

about its equilibrium point. Considering its three main 

terms, this expansion can be written for a system of the 

form X� = F�X, u� as follows: 

  f'�ZK + ∆Z� ≅ f'�ZK� + ∇f'�ZK�∆Z + �� ∆Z;H'∆Z  (26) 

 

where the f's are vectors of the function F�X, u�, and ∇f'�ZK� and H' are the gradient and Hessian, respectively, 

of the function f'  about the point ZK . The following 

explains how to calculate the high-order fuzzy model 

coefficients from the coefficients of the Taylor expansion of 

the system’s model. Assume a nonlinear dynamic 

continuous system to be described by a set of state-space 

equations as follows: 

X� = F�X, u� =  f��X, u�f��X, u�⋮f��X, u�" , X = �x�x�⋮x�
�        (27) 

If the state-space equations of the nonlinear dynamic 

system (27) are approximated as the following matrix using 

the 2nd-order Taylor expansion, X� = F�X, u� ≅ FK + AK∆X + BK∆u + �� �∑ ∆x'O'=� �A'∆X +B'∆u� + ∆u�A�∆X + B�∆u��   

                      (28) 

where the following equations are substituted to simplify 

the representation of the Taylor series expansion of X� = F�X, u�: 

Z =  x�x�⋮x�u " = �Xu�,  

∆Z; = [∆x�   ∆x�   …  ∆x�  ∆u]  (29)

     

  ∇f'�Z� = � ��<�/6 ��<�/E … ��<�/F ��<��� (30)                                                             

     

H' =
���
���
� �E�<�/6E  ⋮�E�<�/F �/6�E�<�� �/6

�E�<�/6 �/E   ⋮        …�E�<�/F �/E�E�<�� �/E

… �E�<�/6 �/F �E�<�/6 ��⋮ ⋮…… �E�<�/FE �E�<�/F ���E�<�� �/F �E�<��E ���
���
�
  (31)

   

then, the following set of equations holds in Eq. (28): 

FK = F�XK, uK� , ∆X = �∆x�⋮∆x�� , J7�F� = ���
���6�/6⋮��F�/6

…⋱…
��6�/F⋮��F�/F���

� , J��F� =  ��6��⋮��F��
"

A' = l����s��/< ��=���=��
, A� = l����s��� ��=���=��  , AK = lJ7�F�|�=���=��B' = l����s��/< ��=���=��
 , B� = l����s��� ��=���=��  , BK = lJ��F�|�=���=��

     

(32) 

Proof: The main idea for proving Eq. (28) was derived 

from Eq. (26). If F; = [f�f�fv  … f�], then using Eq. (26): 

�f��ZK + ∆Z�⋮f��ZK + ∆Z�� ≅
�f��ZK�⋮f��ZK�� + �∇f��ZK�∆Z⋮∇f��ZK�∆Z� + �� �∆Z;H�∆Z⋮∆Z;H�∆Z�  

                                (33) 

where ZK and ΔZ in Eq. (33) were obtained from Eq. 

(29). It is clear that 
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FK = F�XK, uK� = �f��ZK�⋮f��ZK��   

     (34)

   

 Considering Eq. (30) and assuming the following 

equations can be defined and substituted into the gradient of F: 

�∇f�⋮∇f�� = ���
���6�/6⋮ …⋮ ��6�/F⋮ ��6��⋮��F�/6 … ��F�/F ��F�� ���

� ≜ J�F� = [J7�F� J��F�]
     (35) 

 based on Eq. (32) and (29), 

�∇f��ZK�∆Z⋮∇f��ZK�∆Z� = [J7�F� J��F�]∆Z =
[J7�F� J��F�] �∆X∆u� = AK∆X + BK∆u         (36) 

to calculate the 2nd-degree terms of the Taylor expansion 

according to Eq. (31), one may write Z;H'Z

= [x� x� … x� u]
��
���
��
� ∂�f'∂x��  ⋮∂�f'∂x� ∂x�∂�f'∂u ∂x�

∂�f'∂x� ∂x�   ⋮        …∂�f'∂x� ∂x�∂�f'∂u ∂x�

… ∂�f'∂x� ∂x�
∂�f'∂x� ∂u⋮ ⋮

……
∂�f'∂x�� ∂�f'∂x� ∂u∂�f'∂u ∂x�

∂�f'∂u� ��
���
��
�

Z 

= [x� x� … x� u]
���
���

�∇�<�/6⋮�∇�<�/F�∇�<�� ���
��� Z   

     (37) 

The above equation is equal to  Z;H'Z = x� ��∇�<�/6 � Z + ⋯ + x� ��∇�<�/F� Z + u ��∇�<�� � Z 

     (38) 

Considering Z;H�ZZ;H�Z, ..., and Z;H�Z,  to be the 

components of a vector, 

�Z;H�Z⋮Z;H�Z� =
���
���
x� ��∇�6�/6 � Z + ⋯ + x� ��∇�6�/F � Z + u ��∇�6�� � Zx� ��∇�E�/6 � Z + ⋯ + x� ��∇�E�/F � Z + u ��∇�E�� � Z⋮x� ��∇�F�/6 � Z + ⋯ + x� ��∇�F�/F � Z + u ��∇�F�� �Z���

���

     (39) 

the following can be derived from Eq. (35):  

�Z;H�Z⋮Z;H�Z� = �x� ���s��/6 + ⋯ x� ���s��/F + u ���s��� � Z =

x� ��/6 [J7�F� J��F�]  x�x�⋮x�u " +. … x� ��/F [J7�F� J��F�]  x�x�⋮x�u " +
u ��� [J7�F� J��F�]  x�x�⋮x�u "   

     

 (40)                                                                                                                                 

Considering Eq. (29) and (26), the above equation can 

simply be rewritten as follows: 

�Z;H�Z⋮Z;H�Z� = x�  ¡ ��/6 J7�F�¢ X + ¡ ��/6 J��F�¢ u£ +
⋯ x�  ¡ ��/F J7�F�¢ X + ¡ ��/F J��F�¢ u£ + u �¤ ��� J7�F�¥ X +

¤ ��� J��F�¥ u�    

          (41) 

 

As can be seen, without loss of generality, Z can be 

replaced by ΔZ, X by ΔX, and u by Δu. Based on Eq. 

(32), 

�∆Z;H�∆Z⋮∆Z;H�∆Z� = ∆x�[A�∆X + B�∆u] + ⋯ ∆x�[A�∆X +
B�∆u] + ∆u[A�∆X + B�∆u]  (42) 

 

Substituting Eq. (34), (36), and (42) in Eq. (26), one 

obtains Eq. (28), and the proof is completed. 

The steps carried out above to calculate Eq. (28) are one 

of the results of this study. This theorem can be expressed 

via tensor representation as a Taylor series expansion 

containing terms of degree 3 or higher. 

 

4. The Proposed High-Order Fuzzy 

Representation As a Combination of Zero-Order 

and First-Order Fuzzy 

 

As seen from Eq. (26), the first and second terms of this 

series can be easily modeled using zero-order and first-

order fuzzy structures, respectively. Hence, by adding terms 

corresponding to the third term from Eq. (26), one can 

create a fussy structure closely resembling a high-order 

structure. The following figure displays the proposed high-

order fuzzy system. As seen in this figure, a high-order 

fuzzy system has been converted to several zero- and first-

order fuzzy subsystems, such that the output signal of the 

high-order fuzzy system equals the sum of the outputs of 

the zero- and first-order systems. 
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5. Numerical Simulation 

Two examples are presented to obtain a better 

understanding of Eq. (6), demonstrate the validity of high

order fuzzy models and their role in stabilizing nonlinear 

systems, and analyze the approximation accuracy of high

order fuzzy models. 

1 Example 1: Mechanical model 

pendulum inverted on a cart

The double pendulum inverted on a cart (DPIC) is a 

common dynamic system of current interest in the field of 

nonlinear control  [45]. As shown in Fig. 2, this system 

consists of a linear rail, a cart moving on the rail, and two 

pendulums. The lower pendulum is hinged to the moving 

cart at one end and to the upper pendulum at the other end. 

Both pendulums can rotate freely around the axis 

perpendicular to the plane of the rail. Both pendul

remain vertical under unstable conditions; hence, they will 

fall without an effective control effort. It is assumed that the 

cart can freely move left or right on the horizontal mount 

without any friction and that the force 

effective control force acting on the system.

Fig. 2. Double pendulum inverted on a cart
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balance, it loses its equilibrium and oscillates infinitely. 
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point of the pendulum 

Assuming no external forces at the hinges, the dynamic 

model governing the DPIC can be obtained using the 

Lagrange method as the following nonlinear 2nd

differential equation: D�θ�θ¬ + CCθ,
Using [46], the DPIC system is simplified in the form of 

Eq. (45).The matrices, 

computed in [46]

The DPIC system has three degrees of freedom with one 

input and, hence, is more difficult to cont

variables are needed to describe its state

including the position 

pendulum angles 

� and ω�. The state variables vector and the input in the 

DPIC are as follows: 

X =
���
���

xθ�θ�x�θ� �θ� ����
��� =

���
��� θθωω

 

 

Hence, the state equations are determined as follows:

X� =
���
���
� x�θ� �θ� �x¬θ¬ �θ¬ ����

���
�

=
���
���
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 000D®�H" u 
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Lagrange method as the following nonlinear 2nd

differential equation:  C , θ� Gθ� + G�θ� =
, the DPIC system is simplified in the form of 
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The DPIC system has three degrees of freedom with one 
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. The state variables vector and the input in the 
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� ���
���

xθ�θ�vω�ω����
��� =

���
���
�θKθ�θ�θK�θ� �θ� ����

���
�

=
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� ���
���
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with a deviation of θ� = 20°, °� = 20°
 

Since the cart moves to the right, the case with the 

deviation angles of the lower and upper pendu

opposite directions (i.e., a positive angle for the lower 

pendulum and a negative angle for the upper pendulum) is 

one of the worst in terms of stability. As shown in Figs. 3 

and 4, the inverted double pendulum with an initial = −15°  can be stabilized 

order fuzzy controller. 
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deviation angles of the lower and upper pendulums in 

opposite directions (i.e., a positive angle for the lower 

pendulum and a negative angle for the upper pendulum) is 

one of the worst in terms of stability. As shown in Figs. 3 

and 4, the inverted double pendulum with an initial 

can be stabilized 

 
A comparison of the deviation angles of the DPIC (with linear, 

order fuzzy controllers) with an initial 15° 
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Fig. 

8. Output control signal of the high-order fuzzy controller(control effort) 

with an initial deviation of θ� = 15°, °� = −15° 

 

Based on the above results, the DPIC nonlinear dynamic 

closed-loop system attains asymptotic stability only with a 

high-order fuzzy controller and an initial deviation of 

θ� = 15°, °2 = −15°. 

 

5.2 Comparison of the high-order fuzzy, zero- and 

first-order fuzzy, and classical linear controllers 

The initial deviation threshold of the inverted pendulum 

for stability and the computational burden of the proposed 

fuzzy method for zero- and first-order fuzzy, high-order 

fuzzy, and classical linear controllers were examined in 

three different Simulink files, with the results presented in 

Table 1: 

 
Table 1. A comparison of the computation time and stability threshold 

of the deviation angle for different DPIC controllers DPIC 

Controller Controller 

computation 

time(second) 

Initial 

deviation stability 

threshold(degree) 

High-

order fuzzy 

(HOTSK) 

4.69 s 79° 

Zero- and 

first-order 

fuzzy (TSK) 

1.49 s 60° 

Classical 

linear 

0.245 s 45° 

 

As expected, the burden and time of high-order fuzzy 

computations are more than the other methods due to the 

complexity of the high-order fuzzy relationships. 

  

5.3 Example 2: Nonlinear two-variable Sinc function 

In this example, the function of Eq. (46) is considered in 

order to investigate the approximation accuracy of high-

order fuzzy models and compare it with those of first- and 

second-order fuzzy structures in modeling a nonlinear 

function. The zero- and first-order and quadratic fuzzy 

models of this system were obtained. The approximation 

error is presented in Table 2.  

 y = ´'��/6�/6 . ´'��/E�/E , X ∈ [−10,10]: [−10,10] (46) 

In this example, the product of the two inputs x� and x� 

(i.e., the mutual effect of the inputs) is seen in the output.

 
Fig. 9. Plot of the function in Example 2 

 
Table 2. A comparison of the approximation accuracies of the fuzzy 

models of Example 2 ≠ Modeling 

method 

Numbe

r of rules 

Approximation 

accuracy 

RMSE NDEI 

1 Zero- and 

first-order 

fuzzy 

16 0.0555 0.3795 

2 Quadratic 

fuzzy 

16 0.1086 0.7422 

3  

(Proposed 

high-order 

fuzzy) 

16 0.0376 0.2577 

4 (Proposed 

high-order 

fuzzy) 

32 0.0137 0.0933 

 

In this example, based on Table 2, the fuzzy rule base is 

considered complete for the presented models. In zero-

order fuzzy, each input has 4 membership functions, 

resulting in a total of 16 rules. In second-order fuzzy with 4 

inputs, 2 membership functions are considered for each, 

resulting in 16 rules. In the high-order fuzzy model with 5 

inputs (x1, x2, x1.x2, x1
2, and x2

2), interaction effects 

between inputs are taken into account, and 2 membership 

functions are considered for each. Initially, without 

considering the term x1.x2 in the antecedentpart of fuzzy 

rules, which is similar to row 2, but due to its use in the 

consequent of rules, it provides better modeling accuracy. It 

has been modeled a second time with this term. In this case, 
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there are 32 rules. Both in the antecedent and consequent 

parts of the rules, the term x1.x2 is considered. As 

anticipated, the modeling estimation error has been reduced. 

The function related to this example, as shown in Figure 9, 

is a non-smooth function and is inherently more 

challenging to approximate compared to smoother 

functions. A model with more rules and membership 

functions performs better. Finally, based on the table, the 

high-order fuzzy models have a smaller error compared to 

the first-order and quadratic models.  

 

6. Conclusion 

 

One of the most important applications of fuzzy systems is 

solving control problems. While a significant advantage of 

this structure is modeling and controlling nonlinear systems, 

as processes become more complex, the number of rules 

required to reduce modeling errors increases. This issue 

becomes more pronounced with increased significant input 

interactions. High-order fuzzy systems can provide precise 

approximations for modeling nonlinear dynamic systems. 

In this paper, the approximation ability of the high-order 

fuzzy systems was proved, and the coefficients of these 

models were presented. The high-order models were based 

on the representation of the high-order dynamic fuzzy 

systems derived from 2nd-degree Taylor series expansions, 

which led to the matrix decomposition of the state-space 

equations of the nonlinear system. The matrices obtained 

from this decomposition played a key role in determining 

the stability conditions discussed in [39]. The validity of the 

presented method in stabilizing a nonlinear system with 

high-order fuzzy controllers with the model coefficients 

obtained from the proposed method was studied in the last 

section. Despite the advantages of high-order fuzzy systems 

in modeling nonlinear systems, as mentioned previously, an 

increase in computational burden compared to first-order 

fuzzy systems due to the complexity of the fuzzy 

computations in the presented method is among the 

disadvantages of such models. 

For future research, the authors recommend optimizing 

the introduced control system and determining the 

coefficients of the controller matrix. It is also suggested that 

nonlinear system identification methods be used to estimate 

the matrices AK� , A'� , A�� , BK� , B'�, , and B�� . The 

performance of the proposed method under uncertainty and 

disturbance is another aspect deserving prospective analysis. 
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