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Abstract– Closed-loop identification of multi-rate system with unknown parameters, that 

including prevalent non-uniform sampling data, is considered. The purpose is to identify a multi-

rate closed loop model to approximate the parameters varying system. As far as the research has 

been done, the identification of multi-rate closed loop model with unknown parameters by using 

the expectation-maximization algorithm has not been done. To address this challenge, the two-

stage method and expectation-maximization algorithm are applied in this paper to identify 

unknown parameters of system. In this case, by introducing the hidden variable, an EM is utilized 

to estimate the unknown model parameters. And also, it will be demonstrated that, to estimate of 

system parameters, Instead of the point estimate of the time variable, the full probability 

distribution of the time variable estimate is required. The performance of this procedure represents 

by simulation, and obtain consequences affirm that method has high precision and also has a high 

convergence speed. These simulations express that the performance of this algorithm is good, as 

the identified parameters accede the true parameters after several iterations. The Monte Carlo 

simulation with different noise realizations at SNR=26dB and SNR=46 dB are performed for 

showing the effectiveness of mentioned algorithm.  
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1. Introduction 
 

In many industrial processes, variables are sampled at 

different rates. The manipulated variables are taken at fast 

rate while the measurement variables can be taken at slow 

rate after several minutes which lead to multi-rate (MR) 

system [1-3]. In addition, if the sampling intervals are 

different for each variables, the sampling is called as non-

uniform [4, 5]. Early research into such systems(multi-rate 

sampling) began in the 1950s. Multi-rate systems have 

attracted a lot of attention from researchers to controller 

design [6, 7], system identification [8, 9], and fault 

detection [10, 11].Various methods have been described for 

modeling MR systems and inferring unmeasured or missing 

outputs [12, 13]. Kranc presented the first significant 

investigation for the multi-rate system on the switch 

decomposition method, which was later named as the lifting 

technique, which is the standard finding for converting a 

periodically time-varying system into a time-invariant 

system. For example, Zamani et al. proposes the discrete-

time linear systems with multi-rate outputs [14], Zhang et al. 

considers the finite-time filtering issue for a class of 

wireless networked multi-rate systems with fading channels 

[15]. Some estimation methods have been presented for 

linear systems [16], [17], pseudo-linear systems [18], 

bilinear systems [19], [20] and bilinear-parameter systems 

[21]. 

To solve the problem of incomplete data, Dempster et al. 

[22] proposed the expectation-maximization (EM) 

algorithm. An expectation–maximization (EM) algorithm is 

an iterative method which calculates maximum- likelihood 

estimates of parameters in models statistically, that models 

contain latent variables [23]-[25]. In this article, the EM 

algorithm is employed and it computes a maximum-

likelihood estimate. 

The identification of the closed-loop system is done by 

three well-known techniques, which are direct, indirect, and 

joint input-output methods. in direct method, by using 

linear controller, open- loop parameters are specified and 

the closed-loop transfer function of the system is also 

identified, in indirect identification, awareness of the 

controller structure is mandatory, the data is collected from 

the input-output signals and system is defined by the 
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step), which 

step), 

δ . A 

By defining the Q function as the conditional expectation, 

( | ) {log[ ( , | )]}Q E p c cδ δ δ

 

Where 

Finally, we can get the Q function as follow:
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after k iteration.  

Finally, we can get the Q function as follow: 

 
A block diagram of EM algorithm. 

after k iteration.  
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By taking the gradient of the Q function, parameter 

estimates are calculated [39]. 
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4. Simulation 

 

There are some methods such as direct method, indirect 

method, joint input-output method, and two-stage method 

which used to identify the closed-loop system. In this 

article we use two-stage method and EM algorithm for 

identification of closed-loop parameters. 

Following the multi-rate system with time varying are 

considered (as process model), 

 

1 3.6

0.2
i i N ii

t t t t

f

N N d N

x x u z

y x p

+

−

= − +

= +
 

(16) 

Where { }tu e=  have Gaussian distribution (0,1)N

shown in Fig. 3, input has fast rate and can be measured in 

each sampling period, slow rate output{y }
i

f

N is available 

at time instant ( ). 5i iN t N i=  that has been sampled 

irregularly.
2 0.01zδ =  Is the variance of the process noise

t{z }  and
2 0.01pδ =  is measurement noise t{p } ; the fast 

rate input and slow rate output that has been collected is 

300 and 100, respectively. 

Applying the two-stage method and EM algorithm to 

identify closed loop system, the estimated model is shown 

in Fig 4 and Q function is shown in Fig5. The validation 

result is presented in Fig. 6. These simulations express that 

the performance of this algorithm is good, as the identified 

parameters accede the true parameters after several 

iterations. The Monte Carlo simulation with different noise 

realizations at SNR=26dB and SNR=46 dB are performed 

for showing the effectiveness of mentioned algorithm. The 

EM estimates and variances based on 15 Monte Carlo 

simulations are shown in table 1. The mean and standard 

deviation (Std) of the parameter estimates from the Monte 

Carlo simulation are calculated and results are shown in 
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table2. in order to compare, Liu and Gao [61] method has 

been used with the same identification setting. The results 

in terms of mean and std deviation of estimated parameters 

and are shown in Table 3. It is stated from the results that 

the mentioned method, it has more robust and keeps the 

identification accuracy and produces a better parameter 

estimation compared to Liu and Gao method. 

 
Table 1.The EM estimates and variances based on 15 Monte Carlo 

simulations 

 

t  α   β  

 

 γ  

1 3,3890 ± 

0.2346 

-0,8389 ± 

0.1531 

0,2245 ± 

0.3565 

3 3,6016 ± 

0.4323 

-0,9621± 

0.5177 

0,2213 ± 

0.4747 

5 3,5870 ± 

0.4732 

-1,0176± 

0.5354 

0,2081 ± 

0.4672 

7 3,6284 ± 

0.4021 

-0,9976± 

0.5345 

0,2242 ± 

0.4856 

9 3,5754 ± 

0.4670 

-1,0080 ± 

0.5047 

0,2048± 

0.4798 

11 3,5940 ± 

0.4655 

-1,0198 ± 

0.4850 

0,2154 ± 

0.4834 

13 3,6218 ± 

0.3907 
-1,0220 ± 

0.4967 

0,2059 ± 

0.5032 

15 3,5796 ± 

0.4281 

-0,9980 ± 

0.5178 

0,2094 ± 

0.4821 

True 

value 

3.60000 -1.00000 0,200000 

 

Table 2.The mean and standard deviation of parameter estimates from 

Monte Carlo simulations  

 

 

5. Conclusion 

Identification of multi-rate closed-loop systems with t

imevarying is considered in this paper. For addressing 

this challenge, two-stage method and expectation maxi

mization is used for identifying parameters of system. 

The efficiency of this method has been considered by 

a simulation example and the results show that the acc

uracy of the mentioned method, and the speed of conv

ergence are high. Method which mentioned in this pap

er can be applied to multivariate systems with different

 structures [40]-[47], and to investigate the efficiency o

f parameters estimation, this method can synthesize ma

thematical implements [48]-[52]and statistical methods [

53]-[60]. In the future research, the identification of m

ultirate closedloop system in the presence of unknown 

time-delay and modeling uncertainties can be investigat

ed. 

 

 

 

 
Table 3.The mean and std deviation with different SNRs (by different algorithm). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

True value 

SNR=26dB SNR=46dB 

mean std mean std 

3.6α =  3,5895 0,1683 3,6070 0,1511 

1β = −  -0,9023 0,1938 -0,9073 0,0967 

0.2γ =  0,2251 0,1965 0,2001 0,1132 

snr 
 

Estimated Parameters(mentioned) Estimated Parameters[61] 

α  β  γ  α  β  γ  

26 3,5995 ± 

0.1683 

-0,9023± 

0.1938 

0,2251 ± 

0.1965 

3,3890 ± 

0.2346 

-0,8389 

± 0.1531 

0,2265 ± 

0.3565 

46 3,6070± 

0.1511 

-0,9073± 

0.0967 

0,2001± 

0.1132 

3,4890 ± 

0.3128 

-0,8621± 

0.5177 

0,2213 ± 

0.4747 

True Value 3.6 -1 0.2 03,6 -1 0.2 
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Fig. 3. The sampled inputs and outputs in multirate system . 

 

 

 
Fig. 4.Estimation of the parameters . 

 

 
Fig. 5. The Q function . 
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Fig. 6 . Validation result.  
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