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Abstract–In this paper, the speed control of a permanent magnet synchronous motor is performed 

in a desired finite time. Due to the nonlinearity of the dynamics of this type of motors and the form 

of the state equations, a back-stepping strategy has been chosen to design the control system. In 

the proposed method, in each design step, the finite time stability condition is used, so the 

nonlinear controller has the ability to guarantee finite time convergence of output tracking error. 

The finite time stability of the proposed control method is proved based on Lyapunov theory. 

Adjusting the convergence time of system outputs can be done by changing the gain of the 

controllers. Furthermore, the proposed controller generates smooth control signal that can be 

implemented. The simulation results show that the proposed method is able to control the speed 

and current of a permanent magnet synchronous motor in desired finite time. 
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1. Introduction 

 

Nowadays, due to the dependence of different industrial 

sectors on electric motors such as automobiles, robotics and 

power generation industry, researchers have explored the 

need to develop digital control methods for these engines. 

Also, the use of processors in power electronic circuits 

related to motor drives has provided the conditions for the 

use of different algorithms to control motors. In [1] for 

controlling the permanent magnet synchronous motor 

(PMSM), the parameters of PID controller are adjusted 

using the optimal particle aggregation method. The PID 

controller in this reference is a linear method, so you must 

first linearize the system equations. When linearization is 

done around an operating point, the linear model obtained 

around the operating point is valid. The distance of the 

system operating conditions from this point reduces the 

compatibility of the original nonlinear system with the 

linearized system. 

Reference [2] provides a method for controlling the 

speed of a PMSM based on parametric changes and 

adaptation of the controller under these conditions. In this 

reference, the system equations must also be linearized, but 

will lead to similar problems to the previous reference. In [3] 

using a fuzzy controller, the parameters of the PID 

controller is set online based on the change of motor speed 

from the standard state and parametric change. In this 

reference, the linear PID method is used like [1]. Also, the 

proposed fuzzy method does not have stability analysis and 

is designed with trial and error. In [4] using neural network, 

an algorithm for controlling and adjusting the parameters of 

PID controller is presented. 

In [5] and [6], the control of the PMSM is based on the 

adaptive control of the reference model. In [7] using self-

adjusting control to identify parameters, and also using 

nonlinear sliding mode method in [8], the speed of three-

phase PMSMs is controlled. Chattering is one of the 

problems of the sliding mode method which makes it 

difficult to implement. In [9] the predictive control is used 

to control the speed of the three-phase PMSM. Reference 

[10] compares PID and fuzzy controllers in controlling a 

three-phase PMSM. Predictive control is used in [11] to 

control speed and in [12] to control current. In [13, 14] 

neural networks have been used to control the PMSM. In 

references [15, 16] the adaptive sliding mode control is 

used and in [17] the developed Kalman filter is used to 

estimate the shaft angle in a PMSM. Finally, in [18], a 
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robust nonlinear predictive method is used to control the 

current in a PMSM. In many methods, the convergence of 

the finite time output to the desired value is very important. 

Finite time stability, in addition to the error convergence 

speed, provides resistance to uncertainties and possible 

disturbances [19]. The problem of finite time stabilization 

of nonlinear systems is mentioned in [20-22]. In some 

methods, such as the sliding mode method, in order to 

guarantee finite time convergence, the control input 

equation includes a discontinuous sign function of the 

signal that leads to high frequency oscillation in the control 

signal. It is not possible to apply these controllers due to the 

oscillation control signal [23, 24]. Therefore, these methods 

need to be modified to implement. 

In the mentioned references, no equation for calculating 

the convergence time is presented and no proof of finite 

time stability are performed. The main purpose of this paper 

is to design a finite time nonlinear controller to control a 

PMSM.Due to the nonlinearity of the dynamic equations of 

this engine, in this paper, the back-stepping control theory 

will be used. Also, using the finite time stability theory, 

time convergence of motor speed is guaranteed 

 

 

2. PMSM Model 

 

PMSM state space model is presented as equation (1) 

[25]. 
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In this equation, di  and 
qi  are the current 

components in the coordinates d-q, ud and uq of the voltages 

applied to the motor, ω is the rotor speed, L is the 

inductance, Rs is the stator resistance and Pn is the number 

of pairs of motor poles. TL is the load torque. To design the 

controller according to equation (1), the input of the ud 

control can be designed to control the id current and the 

input of the uq control can be designed to control the 

angular speed of the shaft.  

 

3. Design of the Control System 

 

3-1- Back-stepping control with finite time stability 

 

The concepts of asymptotic and exponential stability in 

dynamic systems guarantee the convergence of system 

paths over an infinite time horizon. In many applications, it 

is desirable for a dynamic system to converge to a stable 

equilibrium point in a finite time. Many researches has been 

done on the convergence finite time of system [22, 26]. For 

finite time stability, consider the following system. 

 

( ), : nx f x f D= →ℜɺ                   (2) 

 

The equilibrium point of the system (2) is stable for a 

finite time, if in the initial time 0t  the system moves from 

the initial condition 0x and converges to the equilibrium 

point in the period t  which depends on the initial 

condition. Consider the system (2) and the continuous 

Lyapunov function and the derivative : nV →ℝ ℝ in the 

neighborhood of the equilibrium point, which is a definite 

positive. In this case, the origin will be finite time if:  

 

( ) ( )       0V x cV x tα≤ − ∀ ≥ɺ                     (3) 

 

0 1α< < and 0c > , the convergence time depends on 

the initial conditions as follows is: 
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Finite time stability will have all the benefits of 

asymptotic stability, and if the origin of a system is finite 

time stability, then it will be asymptotic stability [27, 28]. 

To describe a back-stepping controller with the ability to 

guarantee finite time convergence, consider the following 

second-order system: 

 

( ) ( )x f x g x

u

ξ
ξ

 = +


=

ɺ

ɺ
 (5) 

 

Based on the backstepping design, we begin with the first 

part of equation (5): 

 

( ) ( )x f x g x ξ= +ɺ                          (6) 

 

In this equation, M is considered as the virtual input. 
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Then with this input, the virtual control is as follows: 

 

( )xξ φ=                                    (7) 

 

to bring the state variable x to the desired value in a 

finite time. For this purpose, consider the following 

Lyapunov function. 

 

( )2

1

1
( )

2
dV x x x= −                         (8) 

 

dx is the desirable value of the state variable x . The 

derivative of this Lyapunov function is as follows: 
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1
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α≤ −ɺ (11) 

 

Equation (11) guarantee that the state variable x

converges to dx in a finite time, and its convergence time 

is obtained from the following equation: 
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Now we define a new variable as follows in the second 

step: 

 

( )z xξ φ= −  (13) 

 

( ) u ( )z x xξ φ φ= − = −ɺ ɺ ɺɺ                    (14) 

 

To stabilize this variable, consider the new state of the 

Lyapunov function as follows: 

 

2
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The derivative of this Lyapunov function is: 

 

2 u ( )V zz z xφ = = − 
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By selecting the main control input as: 
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By using the equations (17) and (16) we have: 

 

2

2 2 2V c V
α= −ɺ

                               
(18) 

Therefore, the limited time stability of the system will be 

guaranteed in the second step, and the convergence time 

will be obtained from the following equation: 
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The total convergence time is obtained from the 

following equation: 

 

x zt t t+=                                   (20) 

 

3-2- Design of control system for PMSM 

 

Considering Equation (1) as the dynamic equations of a 

PMSM, we will have a "finite time" to control id using the 

control theory:  
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To control the speed of ω using finite time back-stepping 

theory, first consider the dynamic equation of speed as 

follows: 
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q
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In the first step, the desired value of 
refqi is designed to 

bring the finite time of speed to the reference value as 

follows. 
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In the second step, the control input is designed to 

stabilize the finite time of current as follows. 
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4. Simulation Results 

 

In this section, the simulation results are shown to 

evaluate the performance of the controller designed. The 

parameter values are in Table (1). Also, the load torque is 

considered as a variable and its changes are shown in 

Figure (1). 

 

Table1- Parameters values 

Parameter  Value  Unit  

Rs 2.875  Ohm 

L  0.085  H 

P 4  Pair  

ψ
  

0.0175 Wb  

B  1  Nm  

J  0.01  Kg*m2
  

 

Figure (1) also shows the load torque changes. 

 

 
Fig. 1- curve of load torque changes 

 

By applying the proposed controller to the motor model, 

in figure (2) the curve of the first output changes (id) and 

the control input changes with this output (ud) in figure (3) 

are drawn. This output is stabilized at its desired value. 

Figures (4) and (5) show the second output changes curve 

which is the angular speed of the shaft and the tracking 

error of this variable. Figures (6) and (7) show the changes 

in the current iq and the virtual control input of this variable 

(iq-ref) and the tracking error of this state variable.The 

second output of the system and the state variable iq are 

controlled with high accuracy in a finite time. Figure (8) 

shows the control input changes associated with this 

subsystem of the engine (uq). The control signal issued 

using the proposed controller has a smooth behavior and 

can be implemented. 

 

 
Fig. 2- Curve of current id changes 
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Fig. 3- Curve of control signal ud changes 

 

 
Fig. 4- Curve of Angular speed changes 

 
Fig. 5- Tracking error of angular speed 

 
Fig. 6- Curve of current iq changes 

 
Fig. 7- Tracking error of current iq 

 
Fig. 8- Curve of control signal uq changes 

To check the ability to adjust the convergence time in the 

proposed method, this time we performed the simulation for 

different control gains. In this case, for the gain 

22 200, 20, 2c = in Figures (9) and (10), iq current changes 

and virtual control input tracking error has been shown by 

this variable. Figures (11) and (12) show the angular speed 

changes and the speed tracking error for gain

21 100,10, 2c = . The convergence time of the variable state 

iq can be adjusted to the desired value by changing the 

controller gain in this subsystem.  

 

 
Fig. 9- Curve of current iq changes 
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Fig. 10- Tracking error of current iq 

 

 
Fig. 11- Curve of angular speed changes 

 
Fig. 12- Tracking error of angular speed 

 

 

5. Conclusion 

 

In this paper, a hybrid of back-stepping method and finite 

time control theory has been used to control the speed of a 

PMSM. The finite time stability of the proposed method is 

proved based on Lyapunov theory. The simulation results 

show that this method can control the speed of the PMSM. 

It also shows the ability to adjust the convergence time of 

the tracking error by changing the controller's gain.The 

control system proposed in this paper, although able to 

control the outputs in a finite time, but requires accurate 

value of parameters and is not robust to parametric 

uncertainties. Therefore, we propose combining robust 

theories with the method used in this paper. 
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