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Abstract–Applying distributed energy resources (DERs) to power systems has been promoted as a 
promising option to meet the growing electricity demand. Despite significant economic, 
environmental, and resiliency benefits, integrating DER, including power electronic devices, into 
the existing power networks causes stability and power quality issues. Therefore, to meet stability 
and power quality standard limits, a sort of compensation using cost-effective and energy-efficient 
technologies and power electronics-based concepts is needed. This paper presents a novel 
configuration of compensating type custom power devices (CPDs) and fault current limiters (FCLs) 
for limiting balanced and unbalanced faults and improving the transient performance of distributed 
generation (DG) sources in a hybrid power system. Moreover, three power grid operational 
scenarios are addressed to reflect the impact of the type of fault and variable power generation 
capacity of DGs on transient stability. Four configurations are implemented using two FCLs 
(BFCL and SFCL) and two energy compensation devices (DVR and UPQC). The transient 
performance of involved DGs with and without applying proposed compensation methods is 
simulated. Simulation experiments were carried out using MATLAB/SIMULINK software. The 
simulation results indicate that UPQC- BFCL is the best solution in all scenarios that improve the 
transient stability of the proposed power system under both balanced and unbalanced faults. 
 
Keywords: custom power devices, dynamic voltage restorer, fault current limiter, transient 
stability, unified power quality conditioner. 

 
 

1. Introduction 

 Integration of renewable energy sources (RESs) into the 
power grid is an effective solution in order to reduce the 
environmental impacts of conventional energy sources and 
meet the future electricity needs. Among different RESs, 
wind and solar are promising solutions that can be 
integrated as DG units into the modern power grids[1]. 
 
Nomenclature 

AF  active filter 
BFCL  bridge fault current limiter 
BR  braking resistor 

CPD  custom power device 
DER  distributed energy resources 
DFIG  doubly-fed induction generator 
DG  distributed generation  
DVR  dynamic voltage restorer 
Eq   equation  
FCL  fault current limiter 
FRT  fault ride through 
GS  grid side  
GSC  grid side converter 
HCLID hybrid fault current limiter and interrupting 

device  
HFCL  hybrid FCL 
IGBT  insulated-gate-bipolar-transistor 
LVRT  low voltage ride-through 
NRA  network reconfiguration algorithm  
PCC  point of common coupling 
PI   proportional-integrator controller 
RES  renewable energy source  
RSC  rotor side convertor 
RSCFCL ring-based saturated core fault current limiter 
R-SFCL resistive super conductive fault current 

limiter 
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SC  short circuit 
SCFCL saturated core fault current limiter 
SFCL  super conductive fault current limiter  
SG  synchronous generator 
SMES  superconducting magnetic energy storage 
SSB  solid-state breaker 
SSCL  solid-state current limiter 
SSFCL solid-state fault current limiter 
SSTS  solid-state transfer switch 
STATCOM static synchronous compensator 
UPQC  unified power quality conditioner 
VSC  voltage source converter  
Cp  power coefficient 
D   diode 
PV  photovoltaic 
Pw  extracted wind power 
Pbase  base power 
PDGS  distributed generation source power 
Rm   maximum resistance 
Rsh  shunt resistance 
Tsc  transition time  
Vw  wind velocity 
ρ   air density 
λ   tip speed ratio 
β   blade pitch angle 
VGrid side grid side voltage 
Vref  reference voltage 
VDVR_ref DVR reference voltage 
VDVR  DVR actual voltage 
VDG side DGs side bus voltage 
∆PDFIG power deviation of the DFIG 
∆ωDFIG  speed deviation of the DFIG 
∆VDFIGdc DC link voltage deviation of DFIG 
∆δSG  load angle deviation of SG 
∆ωSG  rotor speed deviation of SG 
∆PSG  power deviation of SG 
1lg  single line-to-ground fault 
3lg  three line-to-ground fault 
dq   d and q-axis 
ms  millisecond 
pow  power 
p.u.  per unit 
spd  speed 
vlt   voltage 
 
However, despite the proven benefits of using RESs, large 
scale integration of wind and solar power into the existing 
and conventional SG-based power system increases the 
complexity of the power systems and causes some issues 

related to the system transient stability such as fault current, 
voltage and frequency fluctuations, and harmonics [2]–[5]. 
Significant of transient stability analysis and application of 
FCLs dealing with optimal control of the modern electrical 
power systems with multiple RES has been discussed in[6]. 
[4]–[7]review the fault current contribution of renewable 
distributed generation and critical challenges regarding 
integrating renewable DGs into the distribution system, 
focusing on short circuit current capability. In this context, 
[8], [9]explain the important details about short circuit (SC) 
faults as the most destructive faults in power systems 
generating fault current more than 20 times the maximum 
nominal current. [10]highlights several technical and 
economic-oriented drawbacks of the SC faults that 
negatively affect power systems. For example, DGs can 
lead to various problems in distribution systems. These 
problems include instances of unintended tripping caused 
by the operation of protection relays, compromised 
protection measures, and the inadvertent creation of 
isolated sections within the system during a short-circuit 
fault. The literature review reveals many proposed 
measures to overcome issues originating from SC faults 
ranging from traditional approaches to more advance 
approaches. Main features, advantages and disadvantages 
of both traditional and recently emerging FCL technologies 
have been discussed in[11]–[14]. [11]introduces technical 
features and major weaknesses of some of traditional 
approaches in the context of distribution systems which are 
applied for limiting the fault current levels. It underlines the 
grid complexity, power loss and reliability issues as the 
main difficulties of these methods. An assistance system for 
network operators dealing with fault levels exceeding the 
capacity of protective equipment was introduced in[12]. 
This system incorporates a network reconfiguration 
algorithm (NRA). The algorithm was implemented and 
tested on a medium-sized network to evaluate its 
effectiveness, yielding positive results. In[13], the focus is 
on examining how fault level constraints affect the 
economic operation of modern power systems. Compared 
to traditional approaches, FCLs technologies have drawn 
significant attention in recent years. In[14], a detailed 
examination of FCL technologies was conducted, explicitly 
highlighting their developmental and technical aspects. The 
authors classified FCLs into four primary categories: 
superconducting FCLs (SFCLs), solid-state FCLs 
(SSFCLs), hybrid FCLs (HFCLs), and various other 
technological variations. In[15], a study demonstrates the 
utilization of a customized flux-coupling SFCL 
configuration within an AC microgrid. This implementation 
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proves highly effective in constraining fault currents, 
ensuring power equilibrium, and improving voltage and 
frequency stability in the microgrid. Furthermore, the study 
in [16]explores the use of a resistive SFCL (R-SFCL) as a 
means to reduce fault currents in a self-sufficient microgrid 
operating with a dynamic load model and DGs.The 
utilization and development R-SFCLs were proposed by 
researchers in [17] as a means to effectively safeguard a DC 
microgrid against short circuit faults. The investigation 
carried out in [18]focused on the integration of SFCLs with 
batteries within an independent DC microgrid, yielding 
positive outcomes in terms of battery longevity, adherence 
to grid codes, and the cost of DC circuit breakers. Extensive 
analysis on the effects of SSFCLs on power system 
reliability and quality has been conducted in[19]–[22].In 
general, there are two main categories for FCLs and 
SSFCLs: resistive SSFCLs (referred to as R-type SSFCLs) 
and inductive SSFCLs (known as L-type SSFCLs). A recent 
study [23]introduces a novel SSFCL, termed LR-type 
SSFCL, which combines the advantages of both L-type 
SSFCLs and R-type SSFCLs. This innovation enhances the 
stability and overall quality of the power system. Current 
research has extensively explored the applications of hybrid 
FCLs in both AC and DC power networks. In [24], the 
authors analyze the performance of a hybrid fault current 
limiter and interrupting device (HCLID) technique in 
industrial applications at low and medium voltage levels, 
both in AC and DC systems. [25]describes a successful 
implementation of a hybrid SFCC (superconducting fault 
current controller) that operates independently of grid 
monitoring technology. It ensures proper coordination of 
protective devices and safe operation of a distributed 
generation (DG) microgrid. The effectiveness of the real-
time application of saturated core FCL (SCFCL) and ring-
based saturated core FCL (RSCFCL) in enhancing the fault 
ride-through (FRT) capability of a DFIG (doubly fed 
induction generator) system is demonstrated in [26]. The 
feasibility of ideal SCFCL and RSCFCL is validated 
through tests measuring their characteristics, including 
thermal radiation, under normal and fault conditions. 
 
Apart from FCL technologies, power electronics-based 
technologies known as custom power devices (CPDs) have 
been developed to meet power quality problems in the 
electrical distribution system. About this matter, a study by 
[27]explores the notion of custom power. It classifies CPDs 
into two categories: network-reconfiguring type, which 
includes solid-state devices like current limiters (SSCL), 
breakers (SSB), and transfer switches (SSTS); and 
compensating type, which comprises distribution static 

compensators (DSTATCOM), dynamic voltage restorers 
(DVR), and unified power quality compensators 
(UPQC).Comprehensive review on different types of power 
quality issues, their characteristics and also basic concepts, 
design parameters and implementation of compensating 
type of CPDs in electrical machines have been provided 
in[28]. Performance analysis of DVR, UPQC and 
DSTATCOM considering various factors such as power 
rating, cost, speed of operation and harmonic reduction 
have been carried out in [29]. 
From the available literature, it becomes apparent that 
considerable worldwide efforts have been made to analyze 
technical and economic features of available FCL 
technologies as well as CPDs used in power utilities. 
Unlike previous research that only utilized either FCLs or 
CPDs, this study proposes a combined approach that 
includes both energy storing and losing characteristics 
simultaneously through configuring conventional FCLs 
(BFCL and SFCL) with energy compensating devices 
(DVR and UPQC). In this approach, the priority is to 
control the fault current through applying energy 
compensating and energy losing options, respectively. If it 
is not possible to handle occurred faults by energy 
compensating options, then system will use energy losing 
options.  
In this study, a hybrid power system consists of SG, DFIG 
based wind turbine and PV array connected to an infinite 
bus has been modeled and impact of novel configurations 
of CPDs and FCLs on transient stability of the proposed 
hybrid system has been investigated. The paper contributes 
to:  

• Analyzing technical features of conventional FCLs and 
CPDs applicable in a hybrid power system, 

• Developing and analyzing DVR-BFCL, DVR-SFCL, 
UPQC-BFCL and UPQC-SFCL configurations,  

• Simulating the transient responses of involved DG 
sources to the proposed energy compensators, 

• Evaluating simulation results based on transient 
performance indices and selecting the best configuration 
enhancing power quality in the system under study. 

The rest of the paper is organized as follows: the next 
section reviews modeling of the proposed hybrid microgrid, 
section 3 presents recommended FCLs, CPDs and 
configurations including control strategies. Power grid 
operation scenarios and simulation results, and conclusions 
are provided in section 4 and section 5, respectively. 
 
 



2. Modeling of power grid under study

 
presented in this section. Fig. 1 illustrates the structure of 
the microgrid consists of a SG (100 
turbine (150 KVA), and a PV array (100 kW) that are 
connected to an infinite bus through a double
transmission line. Characteristics of DGs are provided in 
Tables 7 and 8 in the appendix. The DVR, UPQC, BFCL 
and SFCL are connected
infinite bus (in series at the terminal of the PCC). 
Characteristics of FCLs and CPDs are also available in the 
appendix, Tables 9, 10, 11, and 12. The power base and 
frequency base rates of the system are 100 KVA and 60 Hz, 
respectively.

 

 
2.1 

Fig
the structure of DFIG. DFIG encompasses two converters, 
namely the grid
converter (RSC), which are independently controlled. The 
central concept involves the RSC
reactiv
At the same time, the GSC manages the DC link voltages 
and maintains converter functionality at a power factor of 
unity (eliminating reactive power)
control of RSC, it is necessary to obtain the rotor current 
measurements in the dq
These measurements are used to follow the re
currents generated by the real power and the magnitude of 
the stator voltage setting. For reference, please refer to Fig
3(a), which illustrates the block diagram of the RSC control 
system.
dq-
the reference current in the dq
tracking is crucial for maintaining a constant DC link 
voltage and achieving a unity power factor at the output of 
the GSC converter. To 
you can refer to Fig
of the GSC control system
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Fig. 1.General structure of hybrid microgrid under study.

2.1 Modeling of wind turbine
Fig. 2 [30]showcases the schemati

the structure of DFIG. DFIG encompasses two converters, 
namely the grid
converter (RSC), which are independently controlled. The 
central concept involves the RSC
reactive power by manipulating rotor current components. 
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measurements in the dq
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system. Similarly, the stator current measurements in the 
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the microgrid consists of a SG (100 
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connected to an infinite bus through a double
transmission line. Characteristics of DGs are provided in 
Tables 7 and 8 in the appendix. The DVR, UPQC, BFCL 
and SFCL are connected between the PCC bus and the 
infinite bus (in series at the terminal of the PCC). 
Characteristics of FCLs and CPDs are also available in the 
appendix, Tables 9, 10, 11, and 12. The power base and 
frequency base rates of the system are 100 KVA and 60 Hz, 
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showcases the schemati
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namely the grid-side converter (GSC) and the rotor
converter (RSC), which are independently controlled. The 
central concept involves the RSC

e power by manipulating rotor current components. 
At the same time, the GSC manages the DC link voltages 
and maintains converter functionality at a power factor of 
unity (eliminating reactive power)
control of RSC, it is necessary to obtain the rotor current 
measurements in the dq-frame, namely
These measurements are used to follow the re
currents generated by the real power and the magnitude of 
the stator voltage setting. For reference, please refer to Fig
3(a), which illustrates the block diagram of the RSC control 

Similarly, the stator current measurements in the 
e, namely Ids_mes and I

the reference current in the dq
tracking is crucial for maintaining a constant DC link 
voltage and achieving a unity power factor at the output of 
the GSC converter. To better understand this control system, 
you can refer to Fig. 3(b), which depicts the block diagram 
of the GSC control system[32]
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showcases the schematic diagram depicting 

the structure of DFIG. DFIG encompasses two converters, 
side converter (GSC) and the rotor

converter (RSC), which are independently controlled. The 
central concept involves the RSC’s regulation of active and 

e power by manipulating rotor current components. 
At the same time, the GSC manages the DC link voltages 
and maintains converter functionality at a power factor of 
unity (eliminating reactive power)[31].To ensure effective 
control of RSC, it is necessary to obtain the rotor current 

frame, namely Idwr_mes

These measurements are used to follow the re
currents generated by the real power and the magnitude of 
the stator voltage setting. For reference, please refer to Fig
3(a), which illustrates the block diagram of the RSC control 

Similarly, the stator current measurements in the 
and Iqs_mes, should accurately track 

the reference current in the dq-frame (Id_ref

tracking is crucial for maintaining a constant DC link 
voltage and achieving a unity power factor at the output of 

better understand this control system, 
3(b), which depicts the block diagram 

[32]. 
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e power by manipulating rotor current components. 
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control of RSC, it is necessary to obtain the rotor current 
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These measurements are used to follow the reference 
currents generated by the real power and the magnitude of 
the stator voltage setting. For reference, please refer to Fig
3(a), which illustrates the block diagram of the RSC control 

Similarly, the stator current measurements in the 
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tracking is crucial for maintaining a constant DC link 
voltage and achieving a unity power factor at the output of 
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employed in this study, providing a peak power of 200 W. 

rb and Observe (P&O) MPPT [6]technique is 
applied to the boost converter to ensure optimal power 
extraction from the PV module under various 
environmental conditions. In order to interface with the grid, 

phase voltage source converter (VSC) is 
utilized to convert the DC power into AC power. Fig

depicting the control of the 

Structure of PV system including converters. 

Control system designed for PV inverter. 

In this study, we used the equations presented in reference 
to characterize the SG. Our model incorporates a rotor 

axis as a point of reference, rotating at the speed of the 
rotor. The relevant SG parameters can be found in the 
appendix to ensure accurate design considerations. 
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3.7 

normal and fault conditions 

As mentioned earlier, this research work contributes to 
investigatin
and FCL on the transient stability of power systems. In 
other words, the aim is to simultaneously benefit from both 
the energy compensating capacity of CPDs and the fault 
limiting character of FCL during fault co
four different configurations (DVR
UPQC
should be highlighted that the main idea is to prioritize the 
utilization of the energy storing capacity of DVR and 
UPQC during the f
operating mechanism of FCLs and CPDs under fault and 
normal conditions formulated as a four
represents the fault detection state (Fault=1) with available 
energy storing capacity (capacity=1) in DVR 
this step, the control system prioritizes CPDs (DVR, UPQC) 
in each configuration to charge their limited storage devices 
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employing the performance indices presented in Eq (6). 
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DVR/BFCL, DVR/SFCL, UPQC/BFCL, and UPQC/SFCL) 
under fault and normal situations are examined. 
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where ∆PDFIG, ∆ωDFIG, ∆VDFIGdc, ∆δSG, ∆ωSG, ∆PSG, 

∆PPVDCvlt represent power deviation of DFIG, speed 
deviation of DFIG, DC link voltage deviation of DFIG, 
load angle deviation of SG, rotor speed deviation of SG, 
power deviation of SG, and DC-link voltage deviation of 
PV, respectively. Lower values of the indices indicate 
improved system performance.  

 
4. Simulation results and discussion 

 This segment presents simulation outcomes that validate 
the enhancement in transient stability of the suggested 
hybrid power system by implementing four CPD-FCL 
techniques. MATLAB/SIMULINK software was utilized to 
conduct simulations, encompassing both balanced (three-
phase to ground (3lg)) and unbalanced (line to ground (1lg)) 
faults occurring at point A, as depicted in Fig. 1.Variation of 
power generation in hybrid power systems is modelled by 
employing two different power generation capacities (100% 
and 40%). The occurrence of faults is assumed to happen at 
0.1 seconds, and the breakers connected to the faulty line 
are opened at 0.2 seconds (after 6 cycles) and reclosed at 
1.1 seconds (after 60 cycles). Additionally, the simulation 
encompasses a total time span of 3.0 seconds, with a time 
step of 0.00001 seconds. To analyze the transient stability 
of the hybrid power system, the potential impacts of both 
balanced and unbalanced faults, as well as power 
generation capacity, are taken into account. This is achieved 
by considering three distinct scenarios. 
 
Table 2.Scenarios considering different fault and generation conditions. 

 
 

Stability performance of the grid in response to using 
CPD-FCL configurations (DVR-BFCL, DVR-SFCL, 
UPQC-BFCL and UPQC-SFCL) within all three scenarios 
are investigated. Furthermore, for the sake of comparison, 
transient response of the power system under the same 
faults but with using BFCL, SFCL and without FCL are 
analyzed. Table 3 presents fault limiting methods used in 
this study including energy storing and losing features of 
each method. 
 
Table 3.Energy compensating and losing features of fault limiting methods 
applied in this study. 

 
 
4.1 Scenario I 

This scenario considers the hybrid power system shown 
in Fig. 1with full power generation capacity under balanced 
3lg fault. Transient stability of the system is investigated 
based on performance indices of SG, PV and DFIG 
formulated in Eq 6.Figs 12, 13, and 14 illustrate transient 
performance of PV DC link, SG and DFIG under 3lg fault 
while the power generation capacity is at the maximum 
level. As shown in Fig. 12, utilizing CPD-FCL technology 
configuration (DVR-BFCL, DVR-SFCL, UPQC-BFCL and 
UPQC-SFCL) resulted in lower rates of PV DC-link 
voltage (PVDCvlt) proving the transient stability 
improvement. Table 4 presents obtained values of transient 
performance indices for PV DC link under balanced 3lg 
fault. The transient response of SG is presented via 
simulation results of the SG load angle, real power, rotor 
speed, and terminal voltage in Fig. 13(a)-(d), respectively. 
According to Eq 6, these are SG transient performance 
indices, and obtained values reported in Table 4indicate 
improved transient stability. Rotor speed, terminal voltage, 
real power, and DC link of DFIG shown in Fig. 14 (a)-(d) 
presents transient stability of DFIG system in response to 
using FCLs assumed in this experiment. Table 4 also 
reports values obtained for performance indices of DC link 
of DFIG. 
 

Scenario Fault Power generation capacity (%) 

Scenario I balanced 3lg 100 
Scenario II unbalanced 1lg 100 
Scenario III balanced 3lg 40 

Technique 
Without 

FCL 
BFCL SFCL 

DVR-
BFCL 

DVR-
SFCL 

UPQC-
BFCL 

UPQC-
SFCL 

Energy compensating     � � � � 
Energy losing  � � � � � � 
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Fig. 12.Comparative transient responses of PV DC link subject to 3lgfault 
and full energy generation capacity. 

 
 

 

Fig. 13.Comparative transient responses of SG subject to 3lg fault and full 
energy generation capacity: (a) SG load angle, (b) SG real power, (c) SG 
rotor speed and (d) SG terminal voltage. 

 

 

Fig. 14.Comparative transient responses of DC link DFIG subject to 3lg 
fault and full energy generation capacity of DGs: (a) DFIG DC link 
voltage, (b) DFIG real power, (c) DFIG rotor speed, (d) DFIG terminal 
voltage. 

 
 

Table 4.Values of performance indices obtained in scenario I. 

 
 

4.2 Scenario II 

Second scenario contains transient performance analysis 
of the projected hybrid power system operating with full 
generation capacity under unbalanced 1lg fault. Like the 
first scenario, transient responses of PV DC link, SG and 
DC link of DFIG to proposed fault control techniques have 
been simulated. Simulation results were validated by 
evaluating performance indices formulated in Eq 6.  

 
Fig. 15 depicts transient response of SG under 

conditions assumed within the scenario II. Simulation 
results obtained for SG system were validated using SG 
load angle (Fig. 15 (a)), SG real power (Fig. 15 (b)), SG 
rotor speed (Fig. 15 (c)), and SG terminal voltage (Fig. 15 
(d)). Accurate values of these performance indices have 
been presented in Table 5 comparing these values proves 
the considerable influence of using energy compensating 
devices (DVR and UPQC) with conventional energy-losing 
FCL technologies (BFCL and SFCL) on limiting the fault 
currents and improving transient stability in the power 
system under study.  

 

 

Fig. 15.Comparative transient responses of SG subject to 1lg fault and full 
energy generation capacity of DGs: (a) SG load angle, (b) SG real power, 
(c) SG rotor speed and (d) SG terminal voltage. 

 
The transient performance of DC link DFIG in response to 
applying planned control techniques under the conditions 
assumed within scenario II have been evaluated through 
DFIG terminal voltage (DFIGVterminal) index.  

3lg Without 
FCL 

BFCL SFCL DVR-
BFCL 

DVR-
SFCL 

UPQC-
BFCL 

UPQC-
SFCL 

SGang(deg.sec) 28.14 9.77 11.3 7.5 6.6 6 8 
SGspd(pu.sec) 0.037 0.019 0.021 0.0162 0.0153 0.014 0.0165 
SGpow(pu.sec) 1.39 0.192 0.315 0.094 0.088 0.079 0.106 

SGvlt(pu.sec) 0.21 0.103 0.12 0.06 0.05 0.040 0.062 
DFIGspd(pu.sec) 0.132 0.105 0.113 0.84 0.085 0.078 0.091 
DFIGvlt(pu.sec) 0.71 0.320 0.375 0.224 0.218 0.213 0.232 
DFIGpow(pu.sec) 0.172 0.061 0.073 0.052 0.054 0.048 0.057 
PVdcvlt(pu.sec) 2.502 1. 59 1.68 1.142 1.105 1.088 1.169 
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Fig. 16 depicts simulation results of DFIG terminal voltage, 
where UPQC-BFCL energy compensating technique shows 
the maximum stability improvement. Detailed information 
about obtained values of DFIG performance indices are 
available in Table 5. 

 

 

Fig. 16.DFIG terminal voltage under 1lg fault and considering full energy 
generation capacity of the system under study. 

 
Table 5.Values of performance indices obtained in scenario II. 

 
 

4.3 Scenario III 

This scenario reflects the importance of variation of 
energy generation capacity on limiting fault current and 
consequently improving transient stability in power system. 
Comparing with previous scenarios, maximum energy 
generation capacity of involved DG sources has been 
reduced from 100% (Scenarios I and II) to 40% in this 
scenario. Balanced 3lg type of fault was assumed in 
scenario III.   

 
Fig. 17 demonstrates impressive transient stability 

improvement of SG validated by four performance indices: 
SG load angle (Fig. 17 (a)), SG real power (Fig. 17 (b)), SG 
rotor speed (Fig. 17 (c)), and SG terminal voltage (Fig. 17 
(d)). The comparison among applied options shows that 
UPQC-BFCL and DVR-SFCL are the best solutions to 
boost transient stability of the proposed system in this 
scenario. Table 6gives the rates obtained for each SG 
performance indices. Furthermore, DFIG terminal voltage 
subject to 3lg fault and 40% energy generation capacity of 
DGs has been depicted in Fig. 18. 
 

 

Fig. 17.Comparative transient responses of SG subject to 3lg fault and 40% 
energy generation capacity: (a) SG load angle, (b) SG real power, (c) SG 
rotor speed and (d) SG terminal voltage. 

 

Fig. 18.DFIG terminal voltage subject to 3lg fault and 40% energy 
generation capacity of DGs. 
 
 

Table 6.Values of performance indices obtained in scenario III, during 3lg 
fault and 40% Capacity of DGs. 

 
 

4.4 Comparison of scenarios I, II, and III 

Comparing the results indicates that UPQC-BFCL 
demonstrates superior transient performance for the PV DC 
link in scenarios I and II. On the other hand, DVR-SFCL 
achieves the best performance in scenario III. It is 
important to highlight that when a fault occurs, there is a 
sudden decrease in voltage at the PCC, leading to reduced 
power fed into the grid. However, the DC/DC converter can 

1lg Without 
FCL 

BFCL SFCL DVR-
BFCL 

DVR-
SFCL 

UPQC- 
BFCL 

UPQC-
SFCL 

SGang(deg.sec) 18.7 4.3 5.1 2.8 2.4 2.1 3.4 
SGspd(pu.sec) 0.014 0.0086 0.0072 0.0048 0.0045 0.0056 0.0077 
SGpow(pu.sec) 0.64 0.082 0.05 0.037 0.028 0.052 0.057 
SGvlt(pu.sec) 0.15 0.107 0.13 0.072 0.054 0.045 0.066 
DFIGspd(pu.sec) 0.102 0.082 0.94 0.074 0.063 0.055 0.081 
DFIGvlt(pu.sec) 0.62 0.382 0.45 0.285 0.23 0.221 0.311 
DFIGpow(pu.sec) 0.13 0.052 0.068 0.056 0.044 0.055 0.052 
PVdcvlt(pu.sec) 1.3 0.705 0.65 0.42 0.46 0.38 0.41 

3lg Without 
FCL 

BFCL SFCL DVR-
BFCL 

DVR-
SFCL 

UPQC-
BFCL 

UPQC-
SFCL 

Sgang(deg.sec) 28.14 14.3 11.5 8.2 7.1 6.6 9 
Sgspd(pu.sec) 0.037 0.019 0.021 0.0138 0.01 0.011 0.0152 
Sgpow(pu.sec) 1.39 0.196 0.292 0.082 0.052 0.049 0.94 
Sgvlt(pu.sec) 0.21 0.103 0.128 0.064 0.058 0.046 0.062 

dfigspd(pu.sec) 0.132 0.107 0.123 0.89 0.086 0.08 0.101 
dfigvlt(pu.sec) 0.71 0.48 0.52 0.29 0.22 0.27 0.25 
dfigpow(pu.sec) 0.62 0.024 0.02 0.018 0.014 0.017 0.015 
PVdcvlt(pu.sec) 2.502 1. 69 1.88 1.184 1.115 1.128 1.179 
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supply the maximum available PV power to the DC link. As 
a consequence of the power imbalance between the PCC 
and the injected power, the DC link voltage experiences a 
sharp increase, as depicted in Fig. 12. 

 
Figs. 13 and 14 illustrate transient responses of rotating-

type DG sources in scenario I that have approximately 
similar performances. Without applying control schemes, 
the current rises abruptly in the fault situation and terminal 
voltage of both SG (Fig. 13 (d)) and DFIG (Fig. 14 (d)) 
drop down to 20%. Furthermore, when a fault occurs, the 
actual power injected into the grid by the Synchronous 
Generator (SG) and Doubly Fed Induction Generator 
(DFIG) significantly decreases, as depicted in Fig. 13 (b) 
and Fig. 14 (b), respectively. Consequently, the mechanical 
power of both the SG and DFIG cannot be converted into 
electrical power, leading to excessive stress on the 
mechanical components of these rotating machines and an 
increase in the rotational speed of their rotors, as 
demonstrated in Fig. 13 (c) and Fig. 14 (c) respectively. As 
a result, the electromagnetic torque of both the SG and 
DFIG experiences a sudden reduction since it is directly 
proportional to the square of the terminal voltage. 

 
Considering the simulation results shown in Figs. 15 and 

16 as well as values of performance indices of involved DG 
sources in Table 15, it is clear that UPQC-BFCL and DVR-
SFCL are two best solutions to limit 1lg fault and improve 
the transient performance of DGs in scenario II. In scenario 
III, by reducing the energy generation capacity of DGs to 
40% and assuming 3lg fault, obtained results shown in Figs. 
17 and18 and Table 6 prove the efficiency of UPQC-BFCL 
and DVR-SFCL methods in increasing transient stability of 
the proposed hybrid system.   

 
Comparison of results obtained in scenarios I and III 

show that suggested storing-losing configurations (DVR-
BFCL, DVR-SFCL, UPQC-BFCL, and UPQC-SFCL) have 
less sensitivity (index deviation) to DGs generation 
capacity and more stability than conventional FCLs 
(BFCL,SFCL). Also, the comparison between transient 
performance of rotating DGs (DFIG and SG) and fixed DG 
(PV) in all three scenarios reveal that storing-losing 
techniques have superior performance than using single 
FCLs. The utilization of FCL significantly improves the 
system performance, as evidenced by the simulation results 
and performance indices. Without incorporating FCL, the 
system demonstrates the poorest performance. 

 
5. Conclusion 

 Configurations of CPDs and FCLs relying on energy 
compensating feature of CPDs improved the transient 
performance of DG sources. The validation of the proposed 
approach involved assessing its efficacy across three 
distinct scenarios, encompassing both balanced and 

unbalanced fault types. Also, consequence of variable 
energy generation capacity of involved DGs has been taken 
into account in these scenarios. Simulation results in 
scenarios I and II confirm the effective contribution of 
applied techniques to stabling the hybrid power system 
operating in 100% DG generation capacity regardless of 
types of faults (balanced and unbalanced). However, 
UPQC-BFCL has the best transient performance in three 
phase-ground (3lg) balanced fault.  

The comparison among all three scenarios (considering 
balanced and unbalanced faults and DG generate 
fluctuation) confirms that energy compensating-losing 
method (DVR-BFCL, DVR-SFCL, UPQC-BFCL, and 
UPQC-SFCL) have better performance than BFCL and 
SFCL. When comparing scenarios I and III with similar 
faults but different shares of DG energy generation (100% 
and 40%), it is notable that transient performance of all 
FCLs decreases with allocating lower DG generation 
capacity (40%). Even, performance reduction is bigger for 
conventional BFCL and SFCL. 
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Appendix 

Table 7.DFIG parameters. 

 

 

 

 

Parameter Value 

Nominal power 150 kW 
Rated voltage 575 V 
Stator to rotor turns ratio 0.3 
Rated frequency 60 Hz 
Stator resistance (Rs) 0.013 p.u. 
Stator inductance (Ls) 0.000284 H 
Rotor resistance (Rr) 0.005 p.u. 
Rotor reactance (Lr) 0.00282 H 
Mutual inductance (Lm) 0.01425 H 
Inertia constant (H) 0.6 Kg.m2 
DC link rated voltage  1150 V 
Turbine inertia constant 4.32 Kg.m2 
Shaft spring constant 1.5 p.u. 
Shaft mutual damping 1.11 p.u. 
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Table 8.SG parameters. 

 

Table 9.BFCL parameters. 

 

Table 10.SFCL parameters. 

 

Table 11.DVR parameters. 

 

Table 12.UPQC parameters. 
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