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Abstract –Miniaturization of bulk crystals in any direction down to nanometer dimensions leads to the emergence of 

quantum confinement phenomenon, which is technologically favorable. Transition Metal Dichalcogenides (TMDs) are 

important mechanical materials that have a layered structure. In addition, ach layer consists of three atomic layers. 

TMD Nano Tubes (TMDNTs) can be created by rolling such a layer. This study investigates structural, mechanical, and 

bonding properties of TMDNTs. In particular, two important quantities, Young’s modulus and Poisson’s ratio, are 

calculated for 6 zigzag MX2 (M=Zr, Hf; X=S, Se, Te) nanotubes and the results are compared with those of other 

known nanotubes. The computed value of Young’s modulus is greater than that of blue Phosphorus and, in some cases, 

higher than those of WS2 nanotubes (which are experimentally synthesized). Given the increase in the bond length 

between M and X atoms, the ratio of Young’s modulus to Poisson’s increases as the atomic number X is reduced. 

However, there is no significant difference in the aforementioned quantity for ZrX2 and HfX2 nanotubes due to the close 

bond lengths of Zr-X and Hf-X. The band gap confirms this finding. A Mulliken charge analysis was conducted to 

investigate the amount of charge transfer between M and X atoms to observe the strength of bond lengths. 

 

Keywords: Transition metal dichalcogenides, Young’s modulus; Poison’s ratio; Density functional theory; 

Mechanical properties. 

 

 

 

1. Introduction 

Nanotubes have been the focus of many research studies 

due to their enhanced electronic, thermoelectric, and 

mechanical properties [1],[2]. Theoretically, these 

nanotubes can be synthesized in terms of their two-

dimensional structures and their stability is predicted thanks 

to first-principles Density Functional Theory (DFT) 

calculations [3] and molecular dynamics simulations [4]–

[8]. Following the experimental realization of carbon 

nanotubes in the year 1991 [9], many more distinct 

nanotubes have continued to be synthesized because they 

can be constructed in accordance with their two-

dimensional counterparts. First synthesis of inorganic 

fullerene-like nanoparticles and nanotubes (IF) was 

reported back in 1992 [9]. Thousands of nanotubes have 

been simulated using ab-initio methods and their properties 

have been predicted [10]. Mechanical properties of 

crystalline solids may completely change in the course of 

any stress applied due to the presence of surfaces, defects, 

boundaries, and dislocations that determine fracture and 

ductility of material. However, nanotubes have a simple 

and precise atomic morphology and can provide us with 

rich information about quantum effects on nano-sized 

scales [6],[7]. The strength of materials is only partially 

determined by their intrinsic mechanical properties, i.e., the 

strength of their chemical bonds. TMDs are being actively 

researched in terms of their applicability in the material 

industry. The largest number of materials synthesized 

belongs to this family of materials up until now [1],[2],[10]. 

Tuning electronic properties through the application of 

mechanical strains and loads is an interesting feature of 

these materials. In this work, an attempt is made to study 

and predict mechanical properties of 6 zigzag MX2 

(M=Zr,Hf; X=S,Se,Te) nanotubes and, in particular, 

calculated Young’s modulus and Poisson’s ratio at their 

equilibrium diameter. It was found here that Young’s 

modulus followed a decreasing trend as X atomic number 

increased in MX2 tubes. In the earlier research work, the 

current author has extensively investigated electronic, 

bonding, and thermoelectric properties of TMDNTs. The 

rest of this paper is constructed as in the following manner. 

In the section on computational details, the ab-initio code, 

pseudo potentials, basis functions, and geometry structure 
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3. Results and discussion 

The results in the range of -0.02 < ε < 0.02 and variation 

of axial strain with respect to the strain energy for the 

structures of all nanotubes are calculated. Young’s modulus 

is obtained for different structures and the values are given 

in Table 1. 

 
Table 1. Interlayer van der Waals distance and Young’s modulus of 

MX2 nanotubes. 

 

Material 
Interlayer van der 

Waals distance 

Young’s modulus 

(GPa) 

ZrS2 3.42 176.0 

ZrSe2 3.48 153.8 

ZrTe2 3.39 149.7 

HfS2 3.32 212.7 

HfSe2 3.62 157.7 

HfTe2 3.44 126.9  

 

Based on the comparison of Young’s Modulus values 

with carbon nanotubes [6]–[8],[21] and blue phosphorus 

[18], it can be seen that these values are on average 7.7 

times less than CNTs, but higher than blue phosphorus in 

value. Young’s modulus value for a zigzag PNT 

(phosphorus nanotube) (R = 5 A; Van der Waals distance 

Delta=5.6A) is about 117 Gpa[18], and for a CNT 

(Delta=3.4A) is 1260 Gpa [6]. Also, the 

experimental/theoretical value of WS2 nanotube is 

respectively 171/150 GPa, showing good agreement with 

our calculated values [9],[22]. The computed values of the 

modulus for TMD nanotubes indicate a decreasing trend for 

ZrX2 and HfX2 structures. That is, as the atomic number X 

decreases, so does the value of the Young’s modulus. This 

decrease in value can be attributed to the increase in the 

distance between the Zr-X and Hf-X bonds. Also, the 

values computed for MX2 nanotubes suggest that HfS2 has 

the highest value of Young’s modulus among others. This 

can be very explained by that fact that bond lengths of HfS2 

are stronger and shorter. 

Based on this referenced literature piece [23], Pugh’s 

ratio of bulk MX2 exhibits brittle behavior which we expect 

to be the case in nanotubes. Another important elastic 

parameter being somehow similar in concept to Pugh’s 

ratio is Poisson’s ratio. It states the brittleness and ductility 

similarly. A dimensionless Poisson’s ratio of 0.5 indicates 

that no changes in volume occur during axial load or elastic 

deformation, which is a definition of ductility. Any values 

less/greater than the critical value of 0.26 are brittle and 

ductile, respectively. The computed values in [23],[24] 

suggest that MX2 bulk materials are brittle and less than 

0.26. As shown in Table 2, all the calculated values are 

higher than 0.26 and behave in a more ductile manner. 

Moreover, it is inferred that bondings are rather ionic than 

covalent. This is the small diameter that results in such 

quantum confinement effects. The larger the radius, the 

smaller the effect. In ZrX2 and HfX2 nanotubes, as the 

radius of the X atoms increases, Poisson’s ratio decreases. 

However, because Zr-X and Hf-X bonds are close to each 

other, Poisson’s ratios are very close. Poisson’s ratio of 

armchair (n,n) carbon nanotubes is about 0.14 (0.12-0.16) 

and slightly higher for other chiralities close to 0.19 [6], 

suggesting stronger covalent bonding between carbon 

atoms. The calculated data indicate that TMD nanotubes are 

more ductile to axial load. Poisson's ratio of TMDNTs is 

0.05-0.2 greater than BNNTs and CNTs values, which 

makes them more plastic [6]. 

 
Table 2. Interlayer van der waals distance and Young’s modulus of 

MX2 nanotubes. 

 

Material  Poisson’s ratio 

ZrS2 0.327 

ZrSe2 0.323 

ZrTe2 0.285 

HfS2 0.324 

HfSe2 0.312 

HfTe2 0.306 

 

Based on DOS plots (Figure 2), all nanotubes, even 

ZrTe2 and HfTe2, are non-metallic with a tiny band gap. 

Other nanotubes have a decreasing band gap from larger X 

to smaller one, implying that the smaller the bond lengths, 

the wider the band gap. 
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4. Conclusion 

In this paper, structural, electronic, elastic, and bonding 

properties of MX2 nanotubes were investigated and it was 

demonstrated that these nanotubes were mechanically 

robust tubes with high Young’s modulus and Poisson’s 

ratio. This study particularly focused on calculating 

Young’s modulus and Poisson’s ratio. The values of 

Young’s modulus for TMD nanotubes indicated a 

decreasing trend for ZrX2 and HfX2 structures. That is, as 

the atomic number X increased, the value of Young's 

modulus decreased. This decrease in value could be 

attributed to the increase in the distance between theZr-X 

and Hf-X bonds. HfS2 had the highest Young’s modulus 

value among others due to shorter bond lengths. Another 

important quantity was Poisson’s ratio which decreased 

following an increase in atomic number X in ZrX2 and 

HfX2. Also, based on our electronic calculations, the band 

gaps followed a similar decreasing trend, as shown in DOS 

plots. The calculated data indicated that TMD nanotubes 

were more ductile to axial load. Poisson's ratio of TMDNTs 

was 0.05-0.2 greater than BNNTs and CNTs values. The 

values of Poisson’s ratio ranged between 0.28 and 0.33. 

The bonding in materials with a value of 0.33 was purely 

ionic and 0.1 was covalent. Thus, TMDNTs possessed 

mostly ionic bonds and, in some cases, a mixture of ionic 

and covalent bonds. This puts them in ductile and elastic 

materials. Another observation shows that bulk ZrTe2 and 

HfTe2 incorporates a zero band gap, but their nanotubes 

exhibit a very small finite size gap. Also, the Mulliken 

population analysis illustrated that the charge transfer from 

Hf to S atoms was slightly higher than other tubes which 

yielded stronger bonds, being consistent with the results of 

Young’s modulus and Poisson’s ratio. 
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