
 
  Electric Vehicles (EVs) and Hybrid Electric Vehicles 
(HEVs) are currently studied because they are the most 
practical solutions for load transportations in continuous 
effort to decrease global environmental as we
fossil fuel energy resources problems. EVs or HEVs are 
characterized by electric motor drives, where electric power 
conversion is done by power 
Recently, considerable advanced controllers for EV or HEV 
IM drives have been presented. The aim of these researches 
is to expand new designs to improve performances of EV or 
HEV while respecting cost, reliability, efficiency, 
complexity and e
battery
illustrated in Fig. 1. The system consists of an IM, an 
inverter, a DC
battery for energy storage. 
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Recently, considerable advanced controllers for EV or HEV 
IM drives have been presented. The aim of these researches 
is to expand new designs to improve performances of EV or 
HEV while respecting cost, reliability, efficiency, 
complexity and e
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illustrated in Fig. 1. The system consists of an IM, an 
inverter, a DC-
battery for energy storage. 
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1. Introduction

Electric Vehicles (EVs) and Hybrid Electric Vehicles 
(HEVs) are currently studied because they are the most 
practical solutions for load transportations in continuous 
effort to decrease global environmental as we
fossil fuel energy resources problems. EVs or HEVs are 
characterized by electric motor drives, where electric power 
conversion is done by power 
Recently, considerable advanced controllers for EV or HEV 
IM drives have been presented. The aim of these researches 
is to expand new designs to improve performances of EV or 
HEV while respecting cost, reliability, efficiency, 
complexity and etc [1]-[7]. The configuration of a typical 

powered EV utilizing Induction Motor (IM) is 
illustrated in Fig. 1. The system consists of an IM, an 

-DC converter, a charger, wheels and a 
battery for energy storage.  
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In (13), “A” can be voltage or current vector.  
Applying the variable substitutions as given by (14), a 
transformation matrix that transforms an unbalanced set of 
variables (e.g, fig. 3(a) and fig. 3(c)) into a balanced set of 
variables (e.g, fig. 3(b) and fig. 3(d)) can be derived as 
given by (15): 
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  where, θe is the angle between the stationary and rotating 
reference frames. In the RFOC technique, IM equations are 
transformed to a rotating reference frame fixed to the rotor 
flux; for this purpose, the transformation matrix is applied 
[32]. It can be seen that (15) is in fact the same as the 
transformation matrix. Therefore, it is expected that using 
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for the stator voltage and 
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for the rotor voltage equations. Then, (16) and (17) can be 
written as (18)-(20): 
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   (18) 
for the stator voltage equations and 
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As it can be seen, (18) and (19) include two terms which 
rotates in the forward or backward direction (forward term: 
superscript “f” and backward term: superscript “b”). As 
expected, each term represents a healthy 3-
fault condition, the backward terms are obtained because of 
the unequal inductances in the faulty 3-phase IM model 

As mentioned above, the structure of the forward and 
backward equations is similar to the healthy
equations. The difference between forward and backward 

phase IM equations is listed in 
Table I and Table II, respectively. 

The Difference between the Forward Terms of 
Equation (18) and (19) and Healthy IM Equat

Forward terms of (18) and (19) Healthy IM 

equation

√3)/4 Lm=3/2Lms
Ls=Lls+3/2Lms

The Difference between the Backward Terms of 
Equation (18) and (19) and Healthy IM Equation

and Healthy IM equation

 Lm =3/2Lms
Ls=Lls+3/2Lms
rr≠0, Lr=Llr+3/2Lmr≠0
iqse and iqre

From (18) and (19), the forward terms are proportional to 
the sum of the inductances ((Lds+Lqs)/2 and (Ldm+Lqm)/2) 
while the backward terms are proportional to the difference 

Lqs)/2 and (Ldm
simplify the equations of vector control, it is therefore 
possible to neglect backward terms since the values are 
typically small as compared to the forward terms. 
Consequently, for rotor flux FOC of a 3-

phase fault, only the forward equations are used. Note 
the structure of the proposed method is the same as the 

Applied Dynamic Systems and Control

(19)







 (20)
As it can be seen, (18) and (19) include two terms which 
rotates in the forward or backward direction (forward term: 
superscript “f” and backward term: superscript “b”). As 

-phase IM. In the 
fault condition, the backward terms are obtained because of 

phase IM model 

As mentioned above, the structure of the forward and 
backward equations is similar to the healthy 3-phase IM 
equations. The difference between forward and backward 

phase IM equations is listed in 

The Difference between the Forward Terms of 
Equation (18) and (19) and Healthy IM Equation 

Healthy IM 

equation 

m=3/2Lms 
Ls=Lls+3/2Lms 

The Difference between the Backward Terms of 
Equation (18) and (19) and Healthy IM Equation 

Healthy IM equation 

m =3/2Lms 
Ls=Lls+3/2Lms 

≠0, Lr=Llr+3/2Lmr≠0
iqse and iqre 

From (18) and (19), the forward terms are proportional to 
the sum of the inductances ((Lds+Lqs)/2 and (Ldm+Lqm)/2) 
while the backward terms are proportional to the difference 

Lqs)/2 and (Ldm-Lqm)/2). To 
ctor control, it is therefore 

possible to neglect backward terms since the values are 
typically small as compared to the forward terms. 

-phase IM under 
phase fault, only the forward equations are used. Note 

the structure of the proposed method is the same as the 

Applied Dynamic Systems and Control, Vol. 1

(19) 

(20) 
As it can be seen, (18) and (19) include two terms which 
rotates in the forward or backward direction (forward term: 
superscript “f” and backward term: superscript “b”). As 

ase IM. In the 
fault condition, the backward terms are obtained because of 

phase IM model 

As mentioned above, the structure of the forward and 
phase IM 

equations. The difference between forward and backward 
phase IM equations is listed in 

The Difference between the Forward Terms of 

Healthy IM 

The Difference between the Backward Terms of 

 

≠0, Lr=Llr+3/2Lmr≠0 

From (18) and (19), the forward terms are proportional to 
the sum of the inductances ((Lds+Lqs)/2 and (Ldm+Lqm)/2) 
while the backward terms are proportional to the difference 

Lqm)/2). To 
ctor control, it is therefore 

possible to neglect backward terms since the values are 
typically small as compared to the forward terms. 

phase IM under 
phase fault, only the forward equations are used. Note 

the structure of the proposed method is the same as the 

conventional FOC; in the proposed method, we apply 
Lm
minimum changes in the RFO vector control, it should be 
possible to control the faulty motor. We observe
without neglecting the backward components, two FOC 
algorithms for vector control of 3
phase fault are needed. However, adoption of two FOC 
algorithms will significantly increase the complexity of the 
drive system and sampling tim
Fig. 4 shows the block diagram of the conventional Indirect 
RFOC (IRFOC) for 3
 

Fig. 4:

systems
 
 
The parameters of the conventional method, which are used 
in Fig. 4 during no
Table III.
 
 
Table III:

and Faulty Conditions (Conventional Method)

Normal condition

Lm=3/2Lms
Ls=Lls+3/2Lms

[ statork

 

 
 
The parameters for the proposed method (again, referring to 
fig.4) during normal and faulty conditions, are given in 
Table IV. 
  
 
 
 
 

1, No.1, 2018: 

conventional FOC; in the proposed method, we apply 
Lm→(Ldm+Lqm)/2 and Ls→(Lds+Lqs)/2. So, with 
minimum changes in the RFO vector control, it should be 
possible to control the faulty motor. We observe
without neglecting the backward components, two FOC 
algorithms for vector control of 3
phase fault are needed. However, adoption of two FOC 
algorithms will significantly increase the complexity of the 
drive system and sampling tim
Fig. 4 shows the block diagram of the conventional Indirect 
RFOC (IRFOC) for 3

Fig. 4: Block diagram of IRFOC for 3
systems 
  

The parameters of the conventional method, which are used 
in Fig. 4 during no
Table III. 

Table III: The Parameters of 3
and Faulty Conditions (Conventional Method)

Normal condition

Lm=3/2Lms 
Ls=Lls+3/2Lms

]= /2stator

The parameters for the proposed method (again, referring to 
fig.4) during normal and faulty conditions, are given in 
Table IV.  

, 2018: 1- 9                      

conventional FOC; in the proposed method, we apply 
→(Ldm+Lqm)/2 and Ls→(Lds+Lqs)/2. So, with 

minimum changes in the RFO vector control, it should be 
possible to control the faulty motor. We observe
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