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ABSTRACT
The present paper is devoted to the development of a kind of spectral meshless radial point 
interpolation (SMRPI) technique in order to obtain a reliable approximate solution for buckling 
of nano-actuators subject to different nonlinear forces. To end this aim, a general type of the 
governing equation for nano-actuators, containing integro-differential terms and nonlinear 
forces is considered. This general type for the nano-actuators is a non-linear fourth-order 
Fredholm integro-differential boundary value problem. The point interpolation method with 
the help of radial basis functions is used to construct shape functions which play as basis 
functions in the frame of SMRPI. In the current work, the thin plate splines (TPSs) are used 
as radial basis functions. This numerical based technique enables us to overcome all kind of 
nonlinearities in the mentioned boundary value problem and then to obtain fast convergent 
solution. Thus, it can facilitate the design of nano-actuators.
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INTRODUCTION AND MATHEMATICAL 
MODEL

In fact, a basic inevitable part of many nano/micro 
electro mechanical systems is a nano/micro actuator. 
The actuator consists of a beam suspended over a 
substrate in nano/micro mechanical actuators or in 
nano/micro mechanical sensors. Electrostatic field is 
induced by imposing a voltage difference between the 
the substrate and beam, and therefore, the electrostatic 
forces captivate the beam into the substrate [18]. 
Furthermore, beam and substrate acts as a capacitor, 

where the motion of the beam can be detected by the 
capacitive change as a signal [5]. The nano-actuators 
are subject to different inherently nonlinear forces 
such as dielectric effects, fringing field effects, van 
der Waals attractions and Casimir force [42, 39, 25]. 
On the other hand, the axial forces in the clamped-
clamped type of nano-actuators is consequential 
matter and should be considered. The presence of such 
axial forces causes an integro-differential term to the 
governing equation of the nano-actuators [2, 3, 9]. As 
a conclusion, since the actuators are manufactured in 
packs as many as thousands for sensors and billions for 
chipsets in the applications of nano-/micro-actuators 
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then, presenting more accurate technique in order 
to analyze nano/micro structures including these 
actuators is of interest to the researchers.

Consider the following general governing equation 
of a nano-actuator beam augmented to boundary 
conditions, including the effect of axial loads and all 
different types of nonlinear forces [18] 
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d d dd = 0, [0,1],
d d d ( )

u u ux P x
x x x u u uζ

α β γη
κ

  − + + + + ∈    +  
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(0) = (1) = 1, (0) = (1) = 0,u u u u′ ′
                                    

(2)   
                                                                 

where all variables and parameters are in the non-
dimensional form, u  is the deflection of the beam 
and x  is the length of the beam. P  and η  represent 
the effect of axial forces, β  denotes the effect of the 
external applied voltage, κ  represents the effect of a 
dielectric layer, γ  represents the fringing field or the 
capillary effect, ζ  is an integer positive number and 
the concept of the parameter α  depends on the value 
of ζ  i.e. in the case of = 3ζ , α  denotes the van der 
Waals effects, and in the case of = 4ζ , α  denotes 
the Casimir effect.

The boundary value problem (1)-(2) has been 
studied in some special cases. In [3] authors considered 
term including P. Authors of [42, 3, 9] studied on 
the force 

2
1

0

d d
d

u x
x

η  
 
 ∫ . In [26, 17], it has been the term 

containing β. Authors in [17, 23, 29] considered the 
force γ. Also, the nonlinear forces term 3u

α  in [39, 23], 
the nonlinear forces term 4u

α  in [25, 29, 24] and κ in 
[42] have been used. Furthermore, the boundary value 
problem (1)-(2) in the general form has been analyzed 
by a modification of Adomian decomposition method 
(ADM) namely Duan-Rach Adomian decomposition 
method [18]. Adomian decomposition method and 
its modification are some kind of semi-analytical 
method [4, 27, 41]. Although many authors find 
that the ADM requires less computational work 
than traditional approaches but they do have some 
disadvantages, however. The first is that the method 
gives a series solution which must be truncated 
for practical applications. In addition, the rate and 
region of convergence are potential shortcomings. 
According to Jiao et al. [22], “although the series can 
be rapidly convergent in a very small region, it has very 
slow convergence rate in the wider region...and the 
truncated series solution is an inaccurate solution in 
that region, which will greatly restrict the application 
area of the method.”

Meshless methods have attracted much attention 
in recent years [15, 14]. There are various types of 

meshless techniques, for example, meshless techniques 
based on weak forms such as the element-free Galerkin 
(EFG) method [13, 30, 16], diffuse element method 
[28], meshless local radial point interpolation method 
[37, 33], meshless local Petrov-Galerkin method [11, 
38, 31] and including their developments; meshless 
techniques based on collocation techniques (strong 
forms) such as the meshless collocation technique 
based on radial basis functions (RBFs) and finally 
meshless techniques based on the combination of 
weak forms and collocation technique [8, 32, 20, 6, 35, 
10, 40, 1, 19, 21, 7].

Shivanian [34, 36] proposed a kind of spectral 
meshless radial point interpolation (SMRPI) method 
which is based on meshless methods and benefits 
from spectral collocation ideas. In SMRPI technique, 
the point interpolation method with the help of 
those radial basis functions, which were free of shape 
parameter, has been proposed to construct shape 
functions which have Kronecker delta function 
property. Based on spectral methods, evaluation of 
high order derivatives of given differential equation is 
not difï¬ cult by constructing and using operational 
matrices. Our aim in this work is the development of 
SMRPI method to obtain the solution of the boundary 
value problem (1)-(2). It will be seen the method with 
high performance, while is numerical based, can easily 
overcome the all kind of nonlinear terms and obtain 
more accurate approximate solutions in a fast way.

Meshless methods have attracted much attention in 
recent years [1,6-8,10-11,13-16,19-21,28,30-33,35,37-
38,40]. One of the very useful and easy to apply among 
meshless methods has been improved by Shivanian 
[34, 36] which is a kind of spectral meshless radial 
point interpolation (SMRPI) method. Our aim in this 
work is the development of this technique to obtain 
the solution of the boundary value problem (1)-(2). 
It will be seen the method with high performance, 
while is numerical based, can easily overcome the all 
kind of nonlinear terms and obtain more accurate 
approximate solutions in a fast way.

Proposed Method 
We concentrate on how to obtain the shape 

functions as basis function for SMRPI approach in 
current section. Since we use the radial basis function 
of conditionally positive definite to build the shape 
functions, remember the following definition and 
theorem from [12]. 

Definition
Suppose that function                            

is  continuous, it is called conditionally positive 
semi-definite of order m if, for all     , all 
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pairwise distinct centers  , and all 
1= [ ,..., ]tr N

Nc c c C∈  are such that 
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for all complex-valued polynomials of degree less 
than m , the quadratic form 

 

)(
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N

k

N

j
xxcc −∑∑ ϕ

is positive or zero. Furthermore, the function φ  is 
called conditionally positive definite of order m  if 
the above quadratic formula is positive, unless c  
is zero. 

Theorem (Micchelli)
Suppose that [0, ) (0, )C Cφ ∞∈ ∞ ∩ ∞  is 

given. The function 2

2
= ( )ϕ φ ⋅  is conditionally 

positive semi-definite of order  on  iff 
( )( 1)m mφ−  is completely monotone on (0, )∞ . 

Now, one can find easily as many as 
conditionally positive definite functions by using 
this theorem. For an example, the thin-plate or 
surface splines 1 2( ) = ( 1) log( )k kr r rφ +−  
are of order = 1m k +  on . Assume that 
the function ( )u x  is continuous on a domain

, where it is constructed using a 
set of nodal points called field nodes. The ( )u x  
at arbitrary considered  point x  is represented 
approximately as 

 

=1 =1
( ) = ( ) ( ) = ( ) ( ) ,

npn
tr tr

i i j j
i j

u x R x a P x b R x a P x b+ +∑ ∑    (3)

Where it constituted of the number of n , radial 
basis function (RBF) ( )iR x  and the number of 
np  monomial ( )jP x . The ( )jP x  in Eq. (3) is 
built using Pascal’s triangle and a complete basis 
is usually preferred. The linear basis functions, to 
construct shape functions, are given by 
 

 ( ) = {1, }, = 2 (1 ),trP x x np D       

 ( ) = {1, , }, = 3 (2 ),trP x x y np D

the quadratic basis forms 

2( ) = {1, , }, = 3 (1 ),trP x x x np D
 

2 2( ) = {1, , , , , }, = 6 (2 ),trP x x y x y xy np D

and the cubic basis functions are constituted of
 

2 3( ) = {1, , , }, = 4 (1 ),trP x x x x np D
 

2 2 3 3 2 2( ) = {1, , , , , , , , , }, = 10 (2 ).trP x x y x y xy x y x y xy np D

It is worth-mentioning here that the second part 
of Eq. (3), i.e. the polynomials, are not necessary 
when the RBFs are chosen from the category 
of strictly positive definite radial basis function 
otherwise they are needed. Therefore, when the 
TPS is employed for interpolation, the polynomial 
terms are needed to avoid the singularity. 
Coefficients ia  and jb  are unknown which 
should be determined. To discover ia  and jb  in 
Eq. (3), a so-called support domain is formed for 
the considered point x, and n  field nodes belong 
to this support domain (a typical support domain is 
a disk with radius sr ). Coefficients ia  and jb  can 
be determined by enforcing Eq. (3) to be satisfied 
at these n  field nodes in the neighborhood of the 
considered point x . Hence, a linear system of 
equations is formed corresponding to each nodal 
point. The resulted system of equations in the 
matrix form are as follows 

 

= ,s n npU R a P b+                                                 (4)

in where sU  is a vector as

1 2 3= { , , , , } ,tr
s nU u u u u                                 (5)

the RBFs moment matrix is 
 

1 1 2 1 1

1 2 2 2 2

1 2

( ) ( ) ( )
( ) ( ) ( )

= ,

( ) ( ) ( )

n

n
n

n n n n n n

R r R r R r
R r R r R r

R

R r R r R r
×

 
 
 
 
 
 





   

       

(6)

and the polynomial moment matrix is 
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1 1 1
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P

x y P x
×
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Also, the vector of unknown coefficients for RBFs is 
 

1 2= { , , , },tr
na a a a                                            (8)

and the vector of unknown coefficients for 
polynomial is 

 

1 2= { , , , }.tr
npb b b b                                           (9)

Note that in Eq. (6), kr  in ( )i kR r  is in fact 
distance, i.e. 

 

2= ( ) , for1D,k k ir x x−                     (10)

2 2= ( ) ( ) , for2D.k k i k ir x x y y− + −
    

(11)

Because in Eq. (3) there are n np+  
unknown variables, for guarantee uniqueness of 
approximation, add np  condition as follows 

 

=1
( ) = = 0, = 1,2, , .

n
tr

j i i np
i

P x a P a j np∑     (12)

 

Now by combining Eq. (3) and Eq. (12) we 
obtain the aimed system of linear equations in the 
matrix shape as: 

 

where

                                                                 

Solving Eq. (13), we obtain 

                           

             

Now by rewrite of Eq. (3) have 

   

where 

          

                                                                              

We call the first n  functions of the above vector 
function as the RPIM shape functions correspond-
ing to each nodal displacements and we show by 
the vector  , that’s mean 

Now Eq. (16) becomes 
 
             

It is consequential matter that the RPIM shape 
functions enjoy the Kronecker delta function 
property which is in fact 

 

1 for i=j,j=1,2,...,n
( ) = .

0 for i j,i,j=1,2,...,ni jxϕ

 ≠

       (20)

This fact is concluded from that they pass 
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through nodal values. Furthermore, the shape 
functions have also the property of partitions of 
unity, i.e. 

 

=1
( ) = 1.

n

i
i

xϕ∑                                                        (21)

Implementation of the SMRPI Method
At first, some notations on derivatives of 

shape function are needed to be described then 
we focus on how to implement the SMRPI for 
Eq. (1). In the current work, we assume that the 
number of total nodes covering = ( )Ω Ω∪∂Ω  
is N . Also, suppose that xn , instead n , is the 
number of field nodes distributed in support 
domain xΩ  corresponding to each considered 
point of interest =x x , for 1D, or = ( , )x x y
, for 2D. For example xΩ  can be a disk cantered 
at x  with radius sr . By rewriting the Eq. (19), 
we have 

 

=1
( ) = ( ) = ( ) .

N
tr

s j j
j

u x x U x uϕ∑Ö                (22)

We know that for each point jx  there exists 
a shape (basis) function ( ), = 1,2,...,j x j Nϕ
, we define = { : }c

j jx x x xΩ ∉Ω  then it is 
clear from Eq. (20) that
 

: ( ) = 0.c
j jx x xϕ∀ ∈Ω                                  (23)

 Now the derivatives of ( )u x  respect to x  and 
y  are 

 

=1 =1

( ) ( )( ) ( )= , = ,
N N

j j
j j

j j

x xu x u xu u
x x y y

ϕ ϕ∂ ∂∂ ∂
∂ ∂ ∂ ∂∑ ∑

  

                                                                                  (24)

and for high derivatives of ( )u x  
 

=1 =1

( ) ( )( ) ( )= , = ,
s ss sN N

j j
j js s s s

j j

x xu x u xu u
x x y y

ϕ ϕ∂ ∂∂ ∂
∂ ∂ ∂ ∂∑ ∑

  

                                                            (25)

where (.)s

sx
∂
∂

 and (.)s

sy
∂
∂

 are s’th derivatives with 
respect to x  and y . Now, substituting = ix x , 
or = ( , )i ix x y  in above equations 

 

( ) ( ) ( ) ( )= , = ,s s s s
x yU D xU U D yU           (26)

where 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 1 2
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( ) ( )( ) ( )
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s s
j i j is s

x ys sij ij

x x
D D

x y
ϕ ϕ∂ ∂
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and
 

1 2= ( , ,..., ) .tr
NU u u u                                        (29)

 

It is necessary that we mention 

: ( ) / = ( ) / = 0, = 1,2,...c s s s s
j j jx x x x x y sϕ ϕ∀ ∈Ω ∂ ∂ ∂ ∂  

                                                                                     
 ,

due to Eq. (23).
Now, we can state the SMRPI method for Eq. 

(1), only for 1D, as follows. Replacing approximate 
Eqs. (22) and (25) into Eq. (1) yields 

 

24 2
1

4 2 20
=1 =1 =1

( ) ( ) ( )
= d

( )

N N N
j j j

j j j
j j j

x x x
u u x P u

x x x u u uζ

ϕ ϕ ϕ α β γη
κ

 ∂ ∂ ∂ 
 + − − −  ∂ ∂ ∂ +  

∑ ∑ ∑∫  

                                                                   

 (30)

Now, setting = ix x , = 1,2,...,i N Ω  ( N Ω  
is the number of nodal points in Ω ) in the latest 
equation and enjoying the notations (26)-(29) 
imply 

 

2
1(4) (2)

20
=1 =1 =1

( )
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( )

N N N
j

x j j x jij ij
j j j i i i

x
D u u x P D u

x u u uζ

ϕ α β γη
κ

 ∂ 
 + − − −  ∂ +  
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(31)
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For those nodal points which are put on 
the boundary ∂Ω  using Eq. (2), we adopt the 
following relations which come from the original 
boundary conditions 

 

1 = 1, = 1,Nu u                                                 (32)

 (1) (1)

1
=1 =1

= 0, = 0.
N N

x j x jj Nj
j j

D u D u∑ ∑                 (33)

Now, we turn back to Eq. (31), suppose that 
, = 1,2,...,iu i N  are known already. We have 

to approximate the integral 
 

2
1

0
=1

( )
d .

N
j

j
j

x
u x

x
ϕ∂ 

 ∂ 
∑∫

The procedure is to apply two dimensional 
Gaussian quadrature rule as follows: 

2

2
1 1

0 1
=1 =1

1 ( 1)( ) 1 2d = d
2

jN N
j

j j
j j

xx
u x u x

x x

ϕϕ
−

  ∂ +  ∂     ∂ ∂    
 

∑ ∑∫ ∫

2

=1 =1

1 ( 1)
1 2= ,
2

j kn N

k j
k j

x
w u

x

ϕ  ∂ +    
∂ 

 
 

∑ ∑

    

(34)

where kw  and kx  are Gaussian coefficients 
and Gaussian points, respectively. To overcome the 
part of nonlinearity terms, we adopt a predictor-
corrector scheme as follows. We rewrite Eqs. (31)-
(33) in the matrix form as follows: 

 
1 = ,n n

nAU BU bρ+ +                                     (35)

where 

2

=1 =1

1 ( 1)
1 2=
2

j kn N
n

n k j
k j

x
w u

x

ϕ
ρ

  ∂ +    
∂ 

 
 

∑ ∑

and matrices ,A B  and vector b  are defined as 
follows: 

 
(4)

(1)

, = 1,2,..., 2

= , = 1, , = 1,2,..., ,
, = 2, 1

x ij

ij ij

x ij

D i N

A i N j N
D i N
δ
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x ij
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i N N

Ω −


−
  

 
                                                                    (37)

      
2 , = 1,2,..., 2,

( ) ( )
= 1, = 1, , ,

0, = 2, 1

n n n
i i i

i

i N
u u u

b i N
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ζ

α β γ
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− − − − +

 −


                                                                                     

(38)

1 2= ( , ,..., ) , = (1,1,...,1) .n n n n tr n tr
NU u u u U

  

                                                               
     (39)

In Eqs. (36) and (37), ijδ  is obviously the 
Kronecker delta function, i.e. 

 

1 , =
= .

0 ,ij

i j
i j

δ

 ≠

                                              (40)
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Numerical Experiments and Comparison
In this section, we show the results obtained 

for some case studies which have been adopted 
from Ref. [18] using the SMRPI method described 
in previous sections. In these examples, N , 
the number of total nodal points covering Ω , is 
regularly distributed. Also in order to implement 
the SMRPI method, the radius of support domain 
(that is a interval in one dimension) to construct 
basis functions is chosen = 4.2sr h , where h  is 
the distance between the nodes in x  direction. 
Also, the integrals (34) are evaluated with = 8n  
points Gaussian quadrature rule. The obtained 
solutions can be compared to those of Ref. [18] 
and references therein. All approximate solutions 
reported here obtained in 1-5 seconds by Matlab 
softwares programm, therefore the method is 
highly robust.

As first case study, consider 
= = = = 0P α κ γ , = 10η . The maximum 

deflection i.e. 1 (0.5)u−  versus the parameter β  
has been plotted in Fig. 1. In the same case, some 
approximate solutions (i.e. deflection of beam 
versus the length of beam) have been shown in 

Fig. 2. For the second case study, suppose = 0P
, = 20α , = 0.396κ − , = 0.325γ , = 4ζ , 

= 5β  and = 0.96η , the approximate SMRPI 
solution is seen in Fig. 3.

To validate our results, consider the boundary 
value problem (1)-(2) and set = = = 0α β γ  
then it leads to 

                                                                               (41)   
24 21

4 20

d d dd = 0, [0,1],
d d d

u u ux P x
x x x

η
  − + ∈     
∫

       
         

 
(0) = (1) = 1, (0) = (1) = 0.u u u u′ ′            (42)

It is easy to see that the unique solution to the 
above equations is ( ) 1u x ≡ . This point is in full 
agreement with our approximation result shown 
in Fig. 2 when = 0β . For the case the parameters 
are not zero, our results are comparable to those 
results obtained by ADM in [18].

  
Fig. 1. The maximum deflection via β  with N=100. 
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Fig. 2. The approximate solutions for different β  with N=30.

  

Fig. 3. The approximate solutions with N=50.
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CONCLUSION
 The governing differential equation of clamped-

clamped nano-actuators has been considered in a 
general form, in which the nano-actuators are subject 
to different nonlinear forces such as the van der 
Waals force, Casimir force, applied voltage, fringing 
field effect, capillary effect and the dielectric layer 
effect. Moreover, there is a nonlinear integral term 
in the governing equation of the nano-actuator due 
to the presence of the axial loads. A new spectral 
meshless radial point interpolation (SMRPI) method 
has been proposed and applied to the mentioned 
boundary value problem. The present method is 
based on meshless methods and benefits from spectral 
collocation techniques. The interpolation with the help 
of conditionally positive definite radial basis functions 
has been used to construct shape (basis) functions 
which have Kronecker delta function property. The 
method does not need any domain element and so it 
is independent of the geometry of the domain. It has 
been revealed through test studies that the method is 
highly robust and reliable.
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