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Inthiswork, Titanium dioxide (TiO2) nanostructures have beensynthesized via a 
microwave assisted solvothermalmethod using titanium tetraisopropoxide (TTIP), 
polyvinylpyrrolidone(PVP) and Ascorbic Acid (AA) in ethanol. The mole ratio of 
PVP/AA was found to be critical in determining the morphology and crystal phase 
of the final product. PVP/AA mole ratio varied from 1 up to 15 to obtain different 
morphologies of TiO2. The structural analysis by XRD diffraction confirmed 
formation of titanium dioxide. The Williamson-Hall (W-H) analysis was used 
to study the individual contributionsofcrystallite sizes and lattice strain on the 
peak broadening of the TiO2 nanoparticles.FTIR spectrum was used to estimate 
the various functional groups present in the nanostructures. Scanning electron 
microscope (SEM) images demonstrate nanoparticle, short nanorod, and long 
nanorods for 5,10 and 15 mole ratio of PVP/AA respectively. TiO2 nanoparticles 
and nanorodshave been used as photoelectrode in dye-synthesized solar cell 
(DSSCs) fabrication. The efficiencies of solar cells were calculated 3.23%and 
4.01% for nanoparticles and nanorods, respectively. 
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INTRODUCTION
Air pollution is one of the most important 

issues, which scientists face with it. Hence, many 
works have been done to reduce this problem in 
our surrounding environment. Using renewable 
energy such as solar energy instead of fossil fuel 
is one solution for the mentioned problem and 
photovoltaic cell (PV) [1-3] is a new technology 
that has attracted enormous interest recently 
because of inexhaustible, safe and environmentally 
friendly [4]. It is possible to find different categories 
of photovoltaic cells in the literature as silicon, 
copper indium selenite, CdTe,perovskite solar cell 
[5,6] and dye-sensitized solar cells [7-20].

Among the mentioned photovoltaic cells, 
Dye-sensitized solar cells (DSSCs) due to the 
high efficiency and low fabrication cost are more 
famous than that of the other ones. Moreover, 

two major requirements in DSSC technology 
are charge transport through a semiconductor 
and the electrolyte [4] which it can be possible to 
increase the electron transport and light trapping 
by using titanium dioxide (TiO2) nanoparticle in 
DSSCs [21]. TiO2 is used as an electron transport 
layer in PV andphotoelectrochemical devices and 
it has been implemented as a photocatalyst [22] 
and electrode solar cell based on dye-sensitized 
photo-electrochemical [23-29]. TheVarious kinds 
of TiO2 structures like TiO2 nanotubes [30] and 
one-dimensional TiO2 [31-33] have been used to 
improve the efficiency of DSSCs.

From the fabrication point of view, 
different methods were used to fabricate TiO2 
nanostructures, which include these methods: 
Sol-Gel [34, 35],Micelle and Inverse Micelle, 
Hydrothermal, Solvothermal [36], Chemical Vapor 
Deposition, Electrodeposition, Sonochemical and 
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Microwave [37-39]. Although, the Solvothermal 
method is more effective because, in this method, 
low temperature is used to format high particle 
crystal with high purity Using microwave helped 
solvothermal technique for quick heating and rapid 
crystallization rate [40, 41].

Titania nanotubes have been used vastly as a 
starting material compared to titanium dioxide 
since they have many hydroxyl groups and 
capability for ion absorption [42, 43]. Furthermore, 
it is possible to improve the electron transport 
as well as light trapping in DSSCs using TiO2 
nanowires and nanorods as scattering layer [44].

In this research, microwave assisted 
solvothermal method is used to prepare 
TiO2nanorods. We introduce PVP as an effective 
capping agent for nanorods formation and ascorbic 
acid as a mild reducing agent in this report for the 
first time. TiO2 nanoparticles and nanorodsare 
used as photoelectrode in dye-synthesized solar 
cell (DSSCs) fabrication.

EXPERIMENTAL METHOD
Preparing TiO2 nanostructures

A mixture of Ti-containing precursor solution 
based on titanium tetraisopropoxide (TTIP)and 
polyvinylpyrrolidone(PVP) and Ascorbic Acid 
(AA) was preparedin 100 ml of ethanol with 
different molar ratio of TTIP/PVP/AA 1:1:X (X: 
1, 5, 10, 15) as mentioned in Table1.Fig.1 shows 

Flowchart of synthesize process. For this solution, 
5ml of TTIP was diluted in absolute (99.99%) 
ethanol.Thereafter, PVP was dissolved in 50 ml of 
ethanol and added to the first solution. Appropriate 
volume of AA was also dissolved in this solution 
and stirred for 10 min. Then the solution was 
exposed to microwave irradiation for 5 min at 450 
W. The microwave treated solution transferred 
to a Teflon sealed autoclave for solvothermal 
synthesis and treated at 150oC for 2 h. The obtained 
powder was washed and calcined at 400oC to 
remove residual compounds and cooled naturally 
to room temperature for further analysis and cell 
fabrication.

Characterization tools
The crystalline structure of the powders 

was recorded by D8-Advanced BrukerX-ray 
diffractometer using Cu-Kα radiation (λ = 1.54056 
Å) in the range 2θ = 20 – 90 degrees. SEM images 
were obtained using LEO 1450VP system. FTIR 
data were collected using an AVATAR-370-FTIR 
THERMONICOLET spectrometer using two 
separate procedures. The sample was unpacked 
into a tablet shape and put onto a polished silicon 
wafer before analysis.

Fabrication and characterization of DSSC
The TiO2nanostructure wasmade by mixing 

with ethyl cellulose, α-terpineol and ethanol. The 
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5 ml TTIP + ethanol (99.99%)

Stirring: PVP + 50 ml ethanol + AA, 10 min

Microwave irradiation: 5 min, 450 W

Thermal treatment: 150oC , 2 hrs

Drying  at 400oC

 
 

Fig.1: Flowchart of synthesize process. 

 
  

Table 1. samples with different PVP to AA molar ratios

Fig.1. Flowchart of synthesize process.
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solution was stirred for 30 minutes. The solution 
sonicated together with heat treatment at 80°C 
until became to a viscous paste. A few drops of 
acetic acid and triton-x-100 added to the solution. 
The paste was spread on the FTO substrate by 
applying doctor blade technique. This is known 
as photoanode. The as prepared photoanode dried 
at 500°C for calcinations and sintering and finally 
the electrodewas treated in the solution of 40 
mM TiCl4 for 30 min. Next, the photoanode was 
soaked in 0.3 mMN719 dye for 24h. After that, the 
cells were filled with I−/I-3electrolyte. The counter 
electrode was Pt fabricated using thermal treatment 
of H2PtCl4 5mM at 400oC for 30 min.Figs. 2 and 
3showthe schematic diagram of the cell structure.

Two main factorsdirectly affect the photovoltaic 
properties of a working electrode: surface area 
ofthe TiO2 layer and TiO2 crystal characteristic. 
The higher surface area would allowmore dye 
molecules to be absorbed on working electrode, 

hence generating more photoelectrons under the 
same level of excitation,while crystal property 
is important to electron transport. Electron 
transport within single crystals is fasterthan in a 
particle aggregate because the grain boundaries 
in the former are muchless. In our case, the TiO2 
nanoparticle layer had a very high surface area 
and dyeloading. A large amount of photoelectrons 
were generated and injected into thenanoparticles. 
However, the large number of grain boundaries 
at the nanoparticleinterfaces had caused a zigzag 
pathway of electron transport with ohmic loss.
Charge recombination became a major obstacle in 
efficient energy conversion(Fig. 3a). The nanorods 
have higher surface area than the nanofibres but 
lower than the nanoparticles. However, as nanorods 
were in single-crystalline form, they could provide 
a better electron pathway for electron transport 
than nanoparticles (Fig. 3b).

The J-V characteristic of the cells having the 
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Fig.2: Schematic diagram of the cell structure. 
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Fig.3: Schematic illustration of electron transportation in the working electrode made of (a) nanoparticles,  

(b) nanorods. 

 

 
  

Fig.2. Schematic diagram of the cell structure.

Fig.3. Schematic illustration of electron transportation in the working electrode made of (a) nanoparticles, (b) nanorods.
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active area of 0.16 cm2 was measured under AM 1.5 
(100mWcm−2) illuminations using a solar simulator 
coupled with a Palm SensPotentiostat for recording 
J-V plots. Incident photon-to-current efficiency 
(IPCE) was measured using a 150W halogen lamp 
in combination with a grating monochromator and 
calibrated by a silicon photodiode. 

RESULTS AND DISCUSSION
Fig.4 shows that the prepared Titanium 

oxide nanostructures are well crystallized and 
composed of Anatase and Rutile phase structures. 

The (101)-plane for Anatase and (110)-plane for 
Rutile are the main diffraction planes seen in the 
figure. The net intensity for (101) shows that the 
samples are well crystallized. Increase of PVP/AA 
causes a considerable increase of the net intensity 
of the main peak of Anatase phase. This is the 
indication of preferential growth of Anatase phase 
due to the increase of PVP as capping agent. The 
mean crystalline size of nanoparticles is estimated 
using Williamson-Hall method [45, 46] and the 
results are plotted as Fig.5 and the calculated mean 
particle size and lattice strain are summed up in 4 

 

 
 

 
 

Fig.4: XRD pattern of the samples with different PVP/AA mole ratios. 
  

5 
 

 

 
Fig.5: Williamson-Hall plot of samples for determination of lattice strains and mean particle sizes. 

  

Fig.4. XRD pattern of the samples with different PVP/AA mole ratios.

Fig.5. Williamson-Hall plot of samples for determination of lattice strains and mean particle sizes.
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Table 2. The mean particle size decreases from S1 
to S4as well as the lattice strain accordingly. It is 
mostly stated that with the decrease of size, lattice 
strain increases unless the morphology of the 
particles changes dramatically [47, 48]. It can be 
stated that the increase of PVP/AA led to change of 
morphology of the samples. 

Fig.6 shows TEM image of TiO2 nanoparticles 

with a narrow size of about 20 nm which was in 
perfect agreement with the XRD analysis results. 
The Energy Dispersive X-ray Spectroscopy (EDS) 
confirms the chemical composition of the prepared 
TiO2 nanoparticles (Fig.7). 

Fig.8 indicates the FTIR spectra of the samples. 
There are absorption peaks for the wavenumbers 
of 2500-4000 cm-1that is confirming the presence 
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Fig.6: TEM image of TiO2 nanoparticles. 
  

Table 2. Williamson-Hall data of the samples

Fig.6. TEM image of TiO2 nanoparticles.
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Fig.7: EDX spectrum image of TiO2 nanoparticles. 
 

  

Fig.7. EDX spectrum image of TiO2 nanoparticles.
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of compounds of carbon and water. The peaks at 
1640 cm−1 in the spectra are due to the stretching 
and bending vibration of the -OH group. The 
peak at 440 cm-1is attributed to Ti-O bond for S1, 
which shifts to 442, 450 and 454 cm-1for S2, S3 and 
S4, respectively. The shift to higher frequencies 
indicates the shortening of Ti-O bond and 
simultaneously confirms the reduction of atomic 
plane distances.

Fig.9 shows SEM images for the samples. 
Generally, they have uniform size distribution 
which is the advantage of this method. 
Nanoparticles transform to nanowire like-
structure when PVP/AA mole ratio increased up 
to 5 (Fig.9-S2). All nanowires are roughly uniform 
in shape and morphology in large area scale. 
Fig.9-S3 showed a uniformly long and narrow 
rod structure with several micrometers length 
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Fig.8: FTIR spectra of the samples. 
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Fig.9: SEM images of the samples. 
  

Fig.8. FTIR spectra of the samples.

Fig.9. SEM images of the samples.
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and 35 – 45 nm thickness. For S4 (Fig.9-S4) the 
colloidal solution is exposed by the excess of PVP 
and the morphology of nanostructures change 
dramatically to elongatednanorods. As the amount 
of PVP increased, the crystal facets of TiO2are 
more influenced by PVP adherence. It means that 
PVP would be attached to the lateral planes with 
high surface energy and doesn’tallow the crystal to 
grow in that direction. It results to the formation of 
nanorods and nanowires. The more PVP is used, 
the better these facets are covered and thus longer 
and thinner they become (Fig.10).

The photocurrent density-voltage (J-V) 
and internal photocurrent efficiency (IPCE) 
characteristics of DSSC are depicted in Figs. 11 and 
12, respectively. Samples with TiO2 nanoparticles 

and nanorods used as photoelectrode under 
simulated air mass 1.5 global (AM 1.5G) 
full sunlight intensity. Detailed photovoltaic 
parameters, namely, open-circuit voltage (VOC), 
short-circuit current density(JSC), fill factor (FF), 
and the photovoltaic power conversion efficiency 
(η) have been obtained and tabulated in Table 3. 
JSC is the parameter determined by the product 
of the charge carrier density under illumination, 
which shows the maximum number of the photo-
generated carriers that can be extracted from 
a solar cell. The results demonstrated that the 
nominal values of Jsc were lower than the case 
of nanoparticle. The nominal efficiency of the 
prepared cell with nanorods was also lower than 
the nanoparticle case. The results indicate low 
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Fig.10: Schematic mechanism of the formation of TiO2nanorods. 

  
Fig.10. Schematic mechanism of the formation of TiO2nanorods.
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Fig.11: J-V plot of the cell fabricated using TiO2 nanoparticles (S1) and nanorods (S4). 
 

  

Fig.11. J-V plot of the cell fabricated using TiO2 nanoparticles (S1) and nanorods (S4).
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photocurrent values compare to the reports for 
DSSCs [49-52]. IPCE values are indicating low 
values over visible to IR range which confirms 
low dye adsorption. This causes low performance 
of the solar cells. Although the IPCE of S4 is less 
than S1, the efficiency as well as JSC of S4 is higher 
than S1 nanoparticle samples. This may be due to 
better morphology and TiO2/organic interfacial 
interface and also could be the indication of the 
enhancement of electron transport rather than the 
particles which is confirmed also elsewhere [18]. It 
is also notable that high efficiency photoelectrode, 
in our research TiO2nanorods sample, for DSSCs 
requires not only a high surface area for the loading 
of large amounts of dye molecules but also a closed 
net microstructure for light capture and facile 
electron transport [53].

CONCLUSIONS
Various TiO2 nanostructureswere fabricated 

using a microwave assisted solvothermal method. 
PVP and ascorbic acid (AA) were used as a surfactant 
and reducing agents, respectively. The results show 
that PVP/AA mole ratio has a crucial effect on 
the morphology of final powder. XRD analysis 
showed that both Anantase and Rutile phases are 
available in the powders but with the increase of 

PVP/AA ratio, Anatase phase is only formed. Dye 
sensitized solar cell fabricated using TiO2nanorods 
showed an efficiency enhancement due to the 
enhancement of short current circuit. It indicated 
that nanorods enhanced electron transport due to 
their preferential growth morphology.
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