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In this work, we analyze and compare the optical properties of 

spherical A: CdSe–ZnS–CdSe and B: ZnS-CdSe-ZnS core–shell–

shell quantum dots (CSQDs). Under the framework of the effective 

mass envelope function theory, the nonlinear susceptibilities 

associated with inter-sub-band transitions in the conduction band are 

computed by solving the three-dimensional Schrödinger equation for 

A and B QDs in the presence of impurity. We theoretically 

investigate the third-order susceptibilities and optical absorption 

coefficients as a function of core radius while the outer radius of 

quantum dots was fixed. The numerical calculations show that QD 

size plays a fundamental role in determining the nonlinear optical 

properties of QDs. The susceptibilities and the absorption 

coefficients have pronounced single peaks (resonance) and depend 

strongly on the geometry of these two quantum dots as well as the 

effect of the quantum confinement. Our theoretical study shows that 

susceptibility and absorption coefficients peaks are red-shifted by 

increasing the core radius, and the magnitude of susceptibility and 

absorption coefficient increase. The resonant magnitudes Im (𝜒(3)) 

of A and B-CSQD are negative and are around (-2.4) and (-2.5), 

respectively. While, for the core radius of R1 = 40 nm, Real (𝜒(3)) of 

A and B-CSQD changes significantly near the resonant frequency 

from positive value (+1.7, +1.6) to negative one (-1.7, -1.6), 

respectively. Furthermore, for R1 = 40 nm, the absorption coefficient 

of A-CSQDs has reached a maximum with the magnitude of situated 

at approximately 0.02 eV. In contrast, this value is equal to for B-

CSQD. Our computational results may open a new window in the 

development of QDs structures for application in optoelectronic 

devices. 
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1. Introduction 
Since the mid-1990s, with the improvement of 

nanotechnology and nanomaterials, core shell 

quantum dots (CSQDs) have been widely used in a 

variety of electronic devices and applications such as 

light-emitting diodes [1-3], solar concentrators [4-6], 

lasers [7-9], single-electron transistors [10-12], 

quantum computing [13-15], single-photon sources 

[16-18], Second-Harmonic Generation [19-21] and 

medical imaging [22-24]. It is obvious that the 

determination of the linear and nonlinear optical 

properties of the CSQDs is also necessary due to their 

widespread use in these various electronic device 

applications. Because of the great importance of 

CSQDs as a class of quantum-confined structures 

with excellent linear and nonlinear optical properties, 

several theoretical studies were performed to better 

calculate the susceptibilities and absorption 

coefficients of CSQDs and the optoelectronic 

processes that occur in these structures. These studies 

have covered research in the CSQDs field, and many 

have focused on various aspects of the effect of the 

CSQD size [25], the applied potential [26], the 

impurity [27-29], and the external electromagnetic 

fields [30], on optical properties. 

Many studies about optical properties have been 

studied and proposed. Zeiri et al., have calculated the 

third nonlinear optical susceptibility in CdTe–CdS–

ZnS core–shell–shell quantum dots [31]. They 

theoretically investigate the third-order 

susceptibilities as a function of the core, shell radii, 

pump photo energy, and time relaxation. This study 

has revealed that CSQD size plays a fundamental role 

in determining the nonlinear optical properties of 

CSQDs. Naifar et al. have investigated the 

eigenvalues, transition energy, and the linear and 

nonlinear dielectric functions have been numerically 

investigated for CdS/ZnS spherical core/shell 

quantum dots embedded in various dielectric 

matrices [32]. Their evaluation was carried out for 

three commonly used matrices such as PVA, PMMA, 

and SiO2. Calculations were done under the effective 

mass approximation and compact density matrix 

approach. Results revealed that the nonlinear optical 

property is strongly affected by the nature of the 

matrix material. By increasing the core/shell radii 

ratio, the energy states, as well as the transition 

energy, are decreasing. It is also indicated that the 

presence of the dielectric mismatch in the QD-matrix 

system can cause significant enhancement on the 

linear and third-order nonlinear dielectric function.  

Ghosh et al. have inspected the role of binding energy 

(BE) on nonlinear optical properties of doped GaAs 

quantum dots [33]. The effects of dot size on energy 

levels, dipole transition matrix, and third-order 

nonlinear optical susceptibilities in a core/shell 

structure of CdS/ZnS spherical QD have been 

investigated by Hasanirokh et al. [34]. Their 

proposed structure shows the large dipole transition 

and high nonlinear and tunable susceptibilities that 

are very suitable for the implementation of active and 

passive devices. A detailed investigation of the effect 

of core and shell radii on the energies and the 

dielectric function of GaN/AlxGa1−xN quantum dots 

has been exhibited by Zeiri et al. [35]. Their 

numerical results indicate that by increasing radii, the 

dielectric function shifts to lower frequencies, and by 

increasing the value of the quantum dots density, the 

peaks of the dielectric function are redshifted, and the 

intensities increase as a function of the pump photon 

energy. Vahdani et al. have demonstrated the linear 

and nonlinear optical dielectric function of a slab of 

CdSe/ZnS quantum dot matrix associated with 

intersubband transitions [36]. Their results show that 

the behavior of third-order nonlinear susceptibility is 

similar to the dielectric function of QDs. 

In this paper, we study two core/shell/shell spherical 

quantum dot heterostructures of A: CdSe/ZnS/CdSe 

and B: ZnS/CdSe/ZnS for cases with and without a 

center impurity. In the structure of A, the band gap of 

the core is smaller than the band gap of the shell. 

While the core is encapsulated with a shell that has a 

larger band gap in the structure of B. We compare the 

optical properties of these two structures and report 

the detailed calculation of the third-order 

susceptibilities and the absorption coefficients. Since 

the ZnS band gap as core (shell) is much larger than 

that of CdSe as shell (core), it is expected that the 

optical properties of these two structures will be 

different.  

 
2. Theory and calculation 
We consider two spherical core/shell/shell quantum 

dots in the structures of A: CdSe/ZnS/CdSe and B: 

ZnS/CdSe/ZnS. We assumed that the structure of A 

is composed of CdSe core and ZnS and CdSe shells. 

While, the core of the structure of B is ZnS, which is 

enveloped by the CdSe and ZnS shells. However, 

both the A and B structures have cores with inner 

radius R1 and shells with R2 and R3 radii, as shown in 

Fig. 1. It is seen that these structures are defined as 

one-step infinity quantum dots.
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Fig. 1. Schematic illustration of spherical core/shell/shell quantum dot (a) (CdSe/ZnS/CdSe) and (b) (ZnS/CdSe/ZnS) 

and their potential profile. The radii of core, shell1 and shell2 are R1, R2 and R3, respectively. 

 

We use the numerical method in the framework of the 

effective mass approximation to simulate the A and 

B QDs, which are assumed to have perfect spherical 

symmetry.  

The Hamiltonian of an electron confined in each of A 

and B QDs in the presence of on-center hydrogenic 

impurity can be described as: 

𝐻 = 𝐻0 + 𝑈(𝑟)  where  𝐻0 = −
ℏ2

2𝑚𝑖
∗ ∇2 + 𝑉0(𝑟)  (1) 

where H0 and U(r) denote the Hamiltonian of an 

electron and the Coulomb interaction of the electron 

with the impurity in a nonuniform dielectric medium, 

respectively. Also, the effective mass (m*i) and the 

confinement potential (V0 (r)) both depend on the 

electron position in the hetero-structure. 

The radial Schrödinger equation is used to find the 

eigenfunctions (Rn,l (r)) of the Hamiltonian with 

spherical symmetry in Eq. (1) and their 

corresponding energies E, so that it can be written as: 

{−
ℏ2

2𝑚𝑖
∗  [

𝑑2

𝑑𝑟2 +  
2

𝑟
 

𝑑

𝑑𝑟
−  

𝑙(𝑙+1)

𝑟2 ] + 𝑉(𝑟) + 𝑈(𝑟)} R𝑛,𝑙 =

𝐸𝑛,𝑙R𝑛,𝑙                       (2) 

In order to achieve reasonable expressions of the 

eigenenergies and their corresponding wave 

functions, the continuity conditions at all boundaries 

of the studied A and B QDs must be satisfied as 

follows: 

{

R𝑛,𝑙 (𝑟𝑖) = 𝑅𝑛,𝑙(𝑟𝑖+1)|
𝑟=𝑟𝑖

1

𝑚𝑖
∗  

𝑑R𝑛,𝑙 (𝑟𝑖)

𝑑𝑟
=

1

𝑚𝑖+1
∗  

𝑑R𝑛,𝑙 (𝑟𝑖+1)

𝑑𝑟
|

𝑟=𝑟𝑖

 
           (3) 

The expression of the first and third-order nonlinear 

optical susceptibility for two energy levels, the 

ground and the first excited states, is given by 

[35,36]: 

𝜒(1)(𝜔) =
 

𝜎𝜐|𝑀21|2

𝐸21−ℏ𝜔−𝑖ℏΓ
                 (4) 

𝜒(3)(𝜔) =
 

𝜎𝜐|𝑀21|2

𝐸21−ℏ𝜔−𝑖ℏΓ
[

4|𝑀21|2

(𝐸21−ℏ𝜔)2+(ℏΓ12)2 −

(𝑀22−𝑀11)2

(𝐸21−𝑖ℏΓ12)(𝐸21−ℏ𝜔−𝑖ℏΓ12)
]                (5) 

where σv represents the carrier density, Eij = Ei − Ej is 

the energy difference between the two states and 

𝑀21 = |⟨𝑅𝑖|𝑒𝑟|𝑅𝑗⟩| which is the transversal part. In 

our calculations, the relation between the optical 

intensity and the applied electric field is taken from 

Ref. [37]. 

In order to investigate the linear and nonlinear 

absorption coefficients which are related to the 

corresponding electric susceptibility, we have used 

the expression taken from Ref. [37]: 

𝛼(𝜔) = 𝜔√
𝜇

𝜀𝑟
𝐼𝑚(𝜀0𝜒(𝜔))                (6) 

Then, the linear and third-order nonlinear dielectric 

functions can be expressed as: 

𝛼(1)(𝜔) = 𝜔√
𝜇

𝜀𝑟

𝜎𝜐ℏΓ𝑖𝑗|𝑀𝑖𝑗|
2

(𝐸𝑗−𝐸𝑖−ℏ𝜔)
2

+(ℏΓ𝑖𝑗)
2            (7) 

𝛼(3)(𝜔, 𝐼) = −𝜔√
𝜇

𝜀𝑟
(

𝐼

2𝜀0𝑛𝑟𝑐
)

4𝜎𝜐ℏΓ𝑖𝑗|𝑀𝑖𝑗|
4

[(𝐸𝑗−𝐸𝑖−ℏ𝜔)
2

+(ℏΓ𝑖𝑗)
2

]
2       (8) 

The total dielectric function of CSQDs is defined by 

the expression: 

(a) (b) 
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𝛼(𝜔, 𝐼) = 𝛼(1)(𝜔) + 𝛼(3)(𝜔, 𝐼) 
 

3. Numerical results 
In our calculations, the following parameters are 

used: 𝑚𝐶𝑑𝑆𝑒
∗ = 0.13 𝑚0, 𝑚𝑍𝑛𝑆

∗ = 0.28 𝑚0, 

𝐸𝑔 𝐶𝑑𝑆𝑒 = 1.84 𝑒𝑉, 𝐸𝑔 𝑍𝑛𝑆 = 3.54 𝑒𝑉, 𝜀𝐶𝑑𝑆𝑒 =

9.56 𝑒𝑉, 𝜀𝑍𝑛𝑆 = 3.54 𝑒𝑉 and 𝑉𝑐 = 900 𝑒𝑉 [38]. 

Considering the impurity at center of each of A and 

B spherical CSQDs, the single electron eigenenergies 

have been calculated for the s, p, d and f states. We 

have investigated the optical properties of the 

spherical CdSe/ZnS/CdSe and ZnS/CdSe/ZnS 

quantum dots in the case of the last shell radius R2 is 

constant while the radius of the core sphere is varied. 

Remarkably, the energy levels of the electron for A 

and B CSQDs in this case are given as a function of 

the core radius R1 increases to 80 A◦ , where R2= 150 

A◦ is a fixed parameter in Fig. 2a and b. It is found 

that in the case of A CSQD, for the first (1s, 1p, 1d, 

and 1f) state energies, the eigenenergies are 

completely reduced as the size of the core increased 

for both 1s and 1p, indicating that electron-confined 

in the core and the effect of quantum confinement 

befalls on the electron. It should be noted that the 

Bohr radius for materials ZnS and CdSe are 2.5 and 

5.6 nm, respectively [39]. When the size of the 

particle approaches exciton Bohr diameter, the 

quantum confinement effect occurs, and the optical 

properties of CSQDs change drastically. While for 1d 

and 1f states, there is a steady trend first and then 

decreases. In fact, the electron confinement has not 

occurred for the small core radii and energies are 

almost constant up to R1= 25 A0 and R1=30 A0 for 1d 

and 1f states, respectively. But when the core radius 

(R1) increases, the electron confinement is relieved. 

On the other hand, the second (2s, 2p, 2d and 2f) state 

energies have a second flattening which indicates that 

the probability distribution will have two peaks. 

When the energies are on the second flattening, the 

second peak is outside the core, and this is because 

the size of the core is still insufficient to confine the 

second peak. However, it can be seen that this second 

peak penetrates into the core as the energy decreases 

uniformly. Fig. 2b shows that there is a sharp 

difference between the trends of energy changes in 

terms of R1 for B-CSQD compared to A-CSQD. For 

B-CSQD, it is obvious that the eigenenergies have an 

increasing trend for all the first (1s-1f) and second 

(2s-2f) levels. However, the energy of the first states 

essentially is lower than that of the second states. The 

obvious reason for this increase is that in the B-

CSQD, the electron is confined within the inner shell 

(CdSe) and can’t penetrate the inner dot due to 

potential barrier applied by the ZnS core layer.  

 

(a) 

(a) 
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Fig. 2. Energy levels of (a) the spherical CdSe/ZnS/CdSe quantum dot and (b) the spherical ZnS/CdSe/ZnS quantum 

dot with the impurity as functions of the core radius for constant R2. 

 

In Fig. 3(a,b) we have depicted the variation of the 

third-order susceptibility as a function of wavelength 

in the A-CSQD, for four different values of core 

radius (R1) in both cases E > Vc and E < Vc. From 

this figure we can see that increasing R1 leads to a 

shift for the susceptibility peak towards the longer 

wavelength for both cases (E > Vc and E < Vc). Both 

the magnitude of the peak and its position depend on 

the radius of the core. When the radius of the core 

increases, energy distances between electronic states 

become smaller. Therefore, the larger the size of the 

core, the smaller the energy distance, and the dipole 

matrix element (μ) becomes stronger by increasing 

the radius of the core. Also, Real and Imaginary part 

of susceptibility (Real (𝜒(3)) and Im (𝜒(3))) of A-

CSQD is shown in Fig. 3c when E<Vc, as a function 

of wavelength at different core radius while the 

radius of the shell is fixed. One can notice that when 

R1 increases, the peaks of Real (𝜒(3)) and Im (𝜒(3)) 

are enhanced and redshifted. According to Fig. 3(c), 

we can observe that for R1 = 40 nm, the resonant 

magnitude Im (𝜒(3)) is negative and being around 2.4 

while Real (𝜒(3)) changes significantly near the 

resonant frequency from positive value (+1.7) to 

negative one (-1.7). When the core radius of the 

quantum dot increases, the electron is confined in the 

core, and the effect of quantum confinement befalls 

the electron; thus, the dipole transition matrix 

element μ increases and this effect showed an 

improvement in the nonlinear optical properties. The 

result is in agreement with those of other researchers 

[40-42]. 
 

(b) 
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Fig. 3. (a,b) Modulus of susceptibility (𝜒(3)) for E<Vc and E>Vc, as a function of wavelength, and (c) The real and 

imaginary part of susceptibility (Real (𝜒(3)) and Im (𝜒(3))) when E<Vc, as a function of photon energy at different core 

radius. 

 

In Fig. 4(a,b), the third-order susceptibility of B-

CSQD has been displayed as a function of pump 

photon energy with four values of core radius in both 

cases E < VC and E > Vc. It is clear remark that for 

ZnS/CdSe/ZnS CSQD, the resonant magnitude of 

𝜒(3) is about 1.7 × 10−15 𝑚2

𝑉2  for R1 = 40 nm in the 

case E< Vc. Increasing R1 leads to a shift of  𝜒(3) 

peak toward the longer wavelength for E < Vc and E 

> Vc. Furthermore, both intensity and position of 

𝜒(3) peaks depend on core radius, and this can be 

related to the quantum size effect in the conduction 

band. The resonant magnitude of 𝜒(3) in 

ZnS/CdSe/ZnS CSQD is around 1.3 × 10−15 𝑚2

𝑉2  in 

the case E> Vc. It may be worth pointing out for the 

case where E > Vc that the intensities of the 

susceptibility peaks have very low values comparing 

with case E < Vc. In Fig. 4(c) the real and imaginary 

parts (Real (𝜒(3)) and Im (𝜒(3))) of A-CSQD as a 

function of the pump photon energy ℏω(eV) for 

different values of R1 have been shown when E<Vc. 

The plot reveals that Real (𝜒(3)) and Im (𝜒(3)) depend 

strongly on R1. We can see that, Real (𝜒(3)) and Im 

(𝜒(3)) increase when increasing core radius from 20 

nm to 80 nm. In fact, for a chosen value R1 = 40 nm, 

Real (𝜒(3)) changes its signs from a negative value (-

1.6) to a positive one (+1.6) while Im (𝜒(3)) ways 

keeps approximately a negative value in the vicinity 

of (-2.5). By increasing core radius, Real (𝜒(3)) and 

Im (𝜒(3)) both witness a progressive redshift. We can 

remember for this section that the positions and 

intensities of susceptibility’s peaks depend on core 

radius value. By increasing the core radius from 20 

nm to 80 nm, the probability of distribution of the 

electronic wave function is principally well confined, 

and so there is no electron distribution in the shells 

for R1= 80 nm. 

 

(a) (b) 

(c) 
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Fig. 4. (a,b). Modulus of susceptibility (𝜒(3)) for E<Vc and E>Vc,  (c) The real and imaginary part of susceptibility 

(Real (𝜒(3)) and Im (𝜒(3))) when E<Vc, as a function of photon energy at different core radius 
 

In Fig. 5(a,b), the imaginary parts of the linear and 

nonlinear absorption coefficient of A and B-CSQD 

have been plotted as a function of the pump photon 

energy ℏω (eV) for different values of R1 with I = 0.2 

MW/cm for E <Vc. The plots reveals that when 

increasing R1, a redshift of peaks appears. For R1 = 

40 nm, the absorption coefficient of A-CSQDs has 

reached a maximum with the magnitude of 0.7 ×

1015𝑚−1 situated at approximately 0.02 eV. While 

this value is equal to 0.9 × 1015𝑚−1 for B-CSQD. 

Therefore, the effect of geometry of these two 

CSQDs as well as the adjustment of size and material 

parameters can be a first step to achieve an 

enhancement of susceptibility and absorption 

coefficient that this behavior can be related to 

quantum confinement effects.   

(a) 

(c) 

(b) 
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Fig. 5. (a and b). Linear and Nonlinear absortion coefficient of A and B-CSQD, as a function of photon energy at 

different core radius 
 

4. Conclusions 
We investigated the optical properties of two 

quantum dots with structures of A: CdSe/ZnS/CdSe 

and B: ZnS/CdSe/ZnS by using numerical modeling. 

The calculations were performed while the total 

radius of the quantum dot remained constant and the 

radius of the core (R1) increased. It was found that the 

changes in core layer thickness can affect the third-

order susceptibility and absorption coefficient of the 

A and B CSQDs. Calculations show that in A and B-

CSQD, the third order nonlinearity susceptibility and  

the linear, nonlinear parts of the absorption 

coefficient depends strongly on the core radius R1. By 

increasing radius, we found that (𝜒(3)) and α shifts to 

lower energies. It is observed that in the case of 

CdSe/ZnS/CdSe CSQD for R1 = 40 nm, the resonant 

magnitude Im (𝜒(3)) is -2.4 while Real (𝜒(3)) changes 

from value (+1.7) to one (-1.7). On the other hand, 

for ZnS/CdSe/ZnS  CSQD, Real (𝜒(3)) changes from 

(-1.6) to (+1.6) while Im (𝜒(3)) ways keeps 

approximately a negative value in the vicinity of (-

2.5). For ZnS/CdSe/ZnS CSQD, the resonant 

magnitude of 𝜒(3) is about 1.7 × 10−15 𝑚2

𝑉2   and 1.3 ×

10−15 𝑚2

𝑉2  for R1 = 40 nm in the case E<Vc and E> 

Vc, respectively. Also, for R1 = 40 nm, the absorption 

coefficient of A-CSQDs has reached a maximum 

0.7 × 1015𝑚−1 situated at approximately 0.02 eV. 

While this value is equal to 0.9 × 1015𝑚−1 for B-

CSQD. The result of this work can be utilized in the 

fabrication of optoelectronics and photonic devices 

such as radar-microwave absorbers and improved 

electrically small antenna. 
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