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In this paper, the optimal parameters of the FSW welding process to 

improve the joint's mechanical properties are obtained using robust 

multi-objective optimization. First, the properties of the weld zone, 

such as the chemical composition of the weld, are investigated using 

scanning electron microscopy (SEM) and energy-dispersive X-ray 

spectroscopy (EDS). The hardness and tensile properties of the weld 

were investigated to evaluate the mechanical properties of the joint. 

The results show at the AA7075 side, the highest hardness is 

observed in the TMAZ, and the hardness is reduced in the SZ. 

Tensile testing revealed that the joint's mechanical characteristics 

were superior to those of the basic metals. In order to obtain the 

relationship between the process input parameters and the 

mechanical properties of the obtained joint, an artificial neural 

network model (ANN) was used. The relationship obtained by ANN 

was then used to obtain the optimal values of process parameters 

considering uncertainties in a robust optimization algorithm. In this 

way, using such an obtained feed-forward neural network and the 

Monte Carlo simulation, a multi-objective genetic algorithm is used 

for the robust Pareto optimization of the friction stir welding 

parameters having probabilistic uncertainties in parameters. Finally, 

the Technique for Order Preference by Similarity to the Ideal 

Solution (TOPSIS) was used to get the best optimum solution. The 

robust optimal process parameters were determined by robust 

multivariate optimization to be 1467 rpm rotational speed and 11 

mm/min traverse velocity. 
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1. Introduction 
In 1991, friction stir welding (FSW) was introduced as 

a relatively new technology for joining alloys that are 

difficult to weld using standard methods. Since the 

introduction of this method, many investigations have 

been conducted to develop this method in various 

applications, such as the automotive industry. Friction 

stir welding has been employed to join different alloys 

such as aluminum [1, 2], Mg [3-5], and Cu [6, 7]. In 

this method, a non-consumable tool generates heat and 

softens the material, thus creating a flow of material. 

So far, this method has been used successfully to join 

different dissimilar metals [8, 9]. Han et al. [10] 

evaluated the mechanical characteristics for friction 

stir welding of 5083-O Al alloy. This study introduced 

the optimal process parameters for the rotational 

speed of 800 rpm and the traverse velocity of 124 

mm/min. Amancio-Filho et al. [11] friction stir welded 

dissimilar Al alloys (AA2024-T351 and AA6056-

T4). Their tensile testing has shown that strength is 

up to 90% of the weakest joining partner 6056-T4. 

Ghiasvand et al. [12] investigated the effects of three 

FSW parameters on the maximum temperature of 

FSW of AA5086 and AA6061 alloys. Their results 

illustrated that pin offset is the most influential 

parameter affecting maximum temperature during 

the process. Yuvaraj et al. [9] optimized parameters 

of the FSW tool for welding dissimilar AA6061 and 

AA7075-T651 aluminum alloys using the Taguchi 

method. Verma et al. [13] evaluated the optimization 

of friction stir welding parameters of dissimilar 

aluminum alloys 6061 and 5083 using response 

surface methodology. They investigated the effect of 

varying tool rotational speed, tool traverse speed, tool 

pin shape, and tool tilt angle on the tensile strength 

and elongation. As it turns out, optimization of process 

parameters has been the focus of researchers in recent 

years to achieve better joint. So far, various methods 

have been used to achieve optimal process values, 

some of which have been mentioned. In this research, 

a new method, considering uncertainties, was used in 

order to obtain the optimal process parameters. 

In real engineering practices, there are different 

causes of uncertainty, such as imperfect parameter 

knowledge, parameter fluctuations owing to 

environmental circumstances, and so on, which must 

be compensated by an optimal robust design strategy 

[14]. Uncertainties have not been considered in 

traditional optimization methods that researchers 

have used to optimize process parameters, and the 

optimization is done deterministically. Without 

addressing uncertainty, generally non-optimal and 

potentially high-risk solutions were obtained. As a 

result, finding a robust design with low-performance 

fluctuation in the presence of uncertainties is very 

desirable. In general, a method named robust design 

optimization (RDO) is used to handle the stochastic 

robustness issue [14].  

In this paper, the mechanical properties of the friction 

stir welding of AA7075-O to AA5083-O aluminum 

alloys were investigated. An artificial neural network 

was constructed to model the correlation between the 

friction stir welding parameters and mechanical 

properties using data obtained from experimental. 

Finally, a robust multi-objective optimization strategy 

employing MCS was employed to discover the best 

possible traverse and rotational speed combination to 

provide the optimal combination of hardness and 

tensile qualities.  

 

2. Materials and Methods   
This study used two different rolled plates of 

aluminum alloys, AA7075-O and AA5083-O. Table 

1 lists the chemical compositions of the rolled plates, 

which were 6 mm thick. Fig. 1 depicts the use of 

friction stir welding.  

 

 
Fig. 1. Welding tool utilized in this investigation 

  

http://www.sciencedirect.com/science/article/pii/S0924013607013659
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Table 1. Chemical composition of alloys 

Weight (%) Si Fe Cu Mn Mg Zn Ti 

AA7075 0.27 0.36 1.21 0.02 1.74 4.9 0.033 

AA5083 0.40 0.40 0.1 0.2 0.4 0.1 0.15 

 

SEM and EDS were used to examine the chemical 

characteristics of the welding zone. The Vickers 

microhardness test was done with a force of 100 g 

and a dwell period of 15 seconds at a distance of 3 

mm from the top surface of the samples. Room-

temperature tensile tests were conducted on samples 

as per ASTM E8 [15] on a tensile testing machine. 

After performing microstructural and mechanical 

tests, optimal parameters will be obtained using a 

robust multivariate optimization method (Fig. 2). In 

order to use optimization algorithms, it is necessary 

to determine a mathematical relationship between the 

input parameters and the output performance of the 

process. For this purpose, an artificial neural network 

was employed to determine this mathematical 

relationship. Then, to tackle this robust multi-

objective optimization problem, a hybrid robust 

multi-objective optimization was adopted. This 

method is divided into two stages: modified-NSGAII 

develops a Pareto front, and TOPSIS selects the 

optimum solution for the Pareto front.  

 

 
Fig. 2. The procedure of the proposed approach 

 

3. Experimental Results 

3.1. Microstructural and SEM-EDS analysis 

of the welded joints 
Fig. 3a and c illustrate the microstructures of the base 

alloys of AA7075 and AA5083, respectively. 

Because of the concentration of small precipitates in 

grain boundaries, the grains in AA7075 were highly 

characterized. As shown in Fig. 3b, the grains in the 

SZ are much finer than the base metal due to the 

recrystallization of the grains in this region. Severe 

plastic deformation and frictional heat generated in 

friction stir welding create a microstructure with 

recrystallized coaxial grains within the stir zone [16]. 
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Fig. 3. Microstructures of (a) AA7075 base alloy and (b) stir zone of the weld, (c) AA5083 base alloy. 

 

The EDS analyses were done on some points in the 

interface between AA7075 and AA5083. The EDS 

results at these points were similar to each other. 

Therefore, it can be concluded that the composition 

of the interface between AA7075 and AA5083 is 

uniform. The EDS analysis of one of these points (the 

point B of the interface between AA7075 and 

AA5083) has been shown in Fig. 4. As an example, 

the mass percentages of Cu, Zn, and Mg at the 

position of A almost corresponded to the content of 

7075 alloys, while the concentration of Mg and Mn 

at the position of C was close to 5083 Al alloy plate. 

At point B, the mass percentages of Mg, Mn, Cu, and 

Zn were the average of two base materials; we could 

assert by this time that this point was the interface of 

mixed two materials; we could assert by this time that 

this point was the of the mixed two materials. In order 

to get the best and most certain results for the welded 

joint, a Line-Scan interface analysis was done (Fig. 

5). The Line-Scan interface analysis demonstrated 

that the mass percentage of Mg was increased while 

moving from the advancing side to the retreating one 

100 μm

50 μm

(a)

(b)

50 μm
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and in the weld nugget was average. On the other 

hand, the mass value of Zn corresponding to the 

content of 7075 alloys was reduced. This analysis 

method was used to graphically show each alloying 

element in the weld center and the concentration of 

each alloying element in the weld sample. This 

investigation noted that the distribution of the 

alloying elements in the weld center was 

heterogeneous, and the difference in various 

properties between the welded joint and the base 

material was clearly proved. 

 

 
Fig. 4. EDS quantitative analysis of interface between AA7075 and AA5083 corresponding to point B 

 

 
Fig. 5. Line-Scan analysis of the welded sample 

 

3.2. Hardness and tensile tests 
Hardness variation in the cross-section of the welded 

specimen produced at a rotational speed of 700 rpm 

and a linear velocity of 36 mm/min can be seen in 

Fig. 6 [11]. As it is known, on the AA7075 side, the 

highest hardness is observed in the TMAZ and the 

HAZ, and the hardness is reduced in the SZ region. It 

is worth noting that the hardness of the SZ is still 

higher than the base metal. The hardness changes in 

the AA5083 processed zone are very small, and the 

hardness in the weld zone is slightly higher than in 

the base metal. Because strain hardening is the 

predominant hardening mechanism in 5083 alloys, 

the hardness profile in this zone was mostly 

influenced by dislocation density. 
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Fig. 6. Microhardness profile of the joint 

 

Table 2 shows the different hardness and tensile 

strength values of welded specimens using different 

rotational and traverse velocities [17]. As is evident 

at all traverse velocities, increasing the rotational 

speed increases the tensile strength values. As the 

rotational speed increases, the strain applied by the 

tool to the material increases, resulting in better and 

stronger mixing between the materials. On the other 

hand, reducing the linear velocity increases the 

tensile strength of welded specimens. Reducing the 

traverse velocity causes the materials to be affected 

by strain for a longer time, resulting in better mixing 

[18, 19]. 

Furthermore, high welding speeds result in low 

generated temperature and material deformation, 

resulting in the production of an unsound joint.  The 

hardness of the specimens decreases with increasing 

rotational speed or decreasing linear velocity. The 

heat input to the workpiece increases as the rotating 

speed increases or traverse speed decreases during 

welding, which promotes grain growth and 

consequently decreases hardness (Table 2).  

 
Table 2. Hardness values and tensile strength of welded specimens using different parameters 

No 
Traverse Speed 

(mm/min) 

Rotational Speed 

(rpm) 

Tensile Strenght 

(Mpa) 

Hardness 

(HV) 

1 20 565 198 97.9 

2 36 565 177 97.3 

3 63 565 161 95.2 

4 96 565 142 92.89 

5 20 700 192 96.7 

6 36 700 180 95.25 

7 63 700 165 90.9 

8 96 700 148 91.67 

9 20 900 216 93.7 

10 36 900 192 94.1 

11 63 900 173 91 

12 96 900 150 90.1 

13 20 1200 232 94.2 

14 36 1200 201 92.1 

15 63 1200 180 90.1 

16 96 1200 154 88.23 

17 20 1400 267 92.3 

18 36 1400 221 90.23 

19 63 1400 195 89 

20 96 1400 171 87.21 
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4. Modeling using neural networks 
In this research, a feed-forward neural network with 

a back-propagation algorithm has been used to 

extract the relationship between process input 

parameters, i.e., linear velocity and tool rotational 

speed, and output parameters, i.e., hardness and 

tensile strength. Also, the input and output values of 

the experimental results were normalized in the range 

of 0-1 for use in the neural network. Proper selection 

of neural network architecture is necessary to 

increase the accuracy of the neural network. For this 

purpose, several neural networks with different 

architectures were evaluated, and the best 

architecture was selected based on trial and error. 

Based on this analysis, a neural network with six 

neurons in the hidden layer and the “logsig” function 

were used. In order to train the neural network, 80% 

of the experimental data was randomly selected, and 

the remaining 20% was used for network testing. At 

the training and testing stages, the correlation 

coefficients for ultimate tensile strength and hardness 

were 0.9999 and 0.9916 and 0.9799 and 0.9891, 

respectively. As it turns out, the performance of the 

neural network in predicting process outputs is 

excellent. 

The following equations (9-11) were extracted from 

the ANN to determine tensile strength and hardness:  

UTS = (
1

1 + 𝑒−(−1.447×F1+0.390×F2−0.497×F3+0.055×F4+0.415×F5−0.331×F6+2.14)
)  (1) 

 

𝐻𝑎𝑟𝑑𝑛𝑒𝑠𝑠 = (
1

1 + 𝑒(−(−0.198×F1+0.169×F2−0.0762×F3−0.303×F4+0.281×F5+0.080×F6+1.86))
 ) (2) 

 

where F (i = 1, 2, 3, ... , 6) can be calculated using: 

𝐹𝑖 =
1

1+𝑒𝑥𝑝−𝑈𝑖
                                                             (3) 

𝑈𝑖 = 𝐶1𝑖 × 𝑅 + 𝐶2𝑖 × 𝑇 + 𝐶3𝑖                                       (4) 

where  

𝑈1 to 6   may be determined as follows: 

 

Constants, Cji, in Equation (4), are illustrated in 

Table 2. T and R are traverse and rotational speeds, 

respectively. T and R are traverse and rotational 

velocities, which are normalized by dividing them by 

1600 and 100, respectively, in this equation. 

Hardness and ultimate tensile strength must be 

multiplied by 110 and 300, respectively, for outputs.  

 

 
Table 3. Weights and biases between the input layer and hidden layer for Equations (1) and (2). 

Ui = C1i × R + C2i × T + C3i 

i 𝐶1𝑖 𝐶2𝑖 𝐶3𝑖 

1 50.53 -58.73 34.21 

2 -30.54 23.086 1.76 

3 -45.85 -13.57 54.87 

4 2.95 62.84 -48.98 

5 10.32 -51.71 25.50 

6 13.17 -233.73 107.30 

 

5. Robust analysis 
Robust optimization is an engineering methodology 

for obtaining optimal process parameters that are less 

sensitive to process variations. Excessive 

performance variations result in decreasing product 

quality. This highlights the need for robust design. 

One way to reduce performance variations caused by 

uncertainties is to find solutions where the 

performance is less sensitive to parameter variations 

without eliminating the cause of the changes, as in 

robust optimization. 

The concept of robustness can be seen schematically 

in Fig. 7. In this figure, the value of a function f must 

be maximized. When the system parameters are 

randomly perturbed from their nominal values, the 

two curves represent the distributions of the 

occurrence frequency of the value of f corresponding 

to two individual designs. In the figure, µ1 and µ2 

state the mean values of the function f for the two 

designs, respectively. Even though the second design 

has a greater mean value of the cost function, the first 

design is preferred in terms of robustness since it is 

significantly less sensitive to changes in the unknown 

system characteristics [14]. 
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Fig. 7. Concept of robust design 

 

The idea underlying robust optimization is that the 

best process parameter is justified not only by its 

mean value but also by its variability in performance. 

One straightforward way of optimizing process 

parameters is to define the optimality conditions of 

the problems based on the deterministic value of the 

function [17]. However, this ideal design may still be 

susceptible to changes in the parameters, which 

presents the issue of design robustness [20].  

Consider X as a random variable, then the prevailing 

model for uncertainties in stochastic randomness is 

the probability density function (PDF), f(x) or 

equivalently by the cumulative distribution function 

(CDF), F(x), where the subscript X refers to the 

random variable. This can be given by 

( ) Pr( ) ( )
x

x xF x X x f x dx


   
                        (5) 

where Pr(X ≤ x) is the probability that an event (X ≤ 

x) will occur. Some statistical moments such as the 

first and the second moment, generally known as 

mean value (also referred to as expected value) 

denoted by µ(X) and variance denoted by σ2(X), 

respectively, are the most important ones. They can 

also be computed by: 

( ) ( )X xX xdF x xf x dx
 

 
  

                     (6) 

And  

(7) 

2 2 2( ) ( ) ( ( )) ( ) ( ( )) ( )x xx Var X x X dF x x X df x  
 

 
     

 
 

These equations can be easily expressed in the case 

of discrete sampling as:  

1

1
( )

N

i

i

X x
N




 
                                                        (8) 

 

And 

2 2

1

1
( ) ( ) ( ( ))

1

N

i

i

X Var X x X
N

 


  



 

(9) 

 

where xi is the ith sample and N is the total number of 

samples. 

In robust optimization, the goal is to reduce process 

variability caused by unknown probabilistic factors 

describing deterministic behavior. As a result, the 

problem of robust optimization can be expressed as 

follows:  

Minimize { [ ( , , )], [ ( , ,p)]}f x d p f x d    
( ) ( )L UX X X    

( ) ( )L Ud d d   

 

(10) 

where ( , , )f x d p is the performance or the cost 

function, µ is the mean value, and  is one of the 

dispersion measure operators such as variance (2) 

and standard deviation (). In addition, x is the vector 

of uncertain design variables, d is the vector of 

deterministic design variables, and p is the vector of 

uncertain parameters that are not design variables.  

  

6. Multi-objective optimization  
A hybrid robust multi-objective optimization was 

used to solve this robust multi-objective optimization 

problem. This approach has two stages: modified-

NSGAII generates a Pareto front, and TOPSIS 

determines the Pareto front's best solution [17]. 

Multi-objective optimization is defined as the process 

of finding a decision variables vector that satisfies 

constraints and gives acceptable values to all 

objective functions. Mathematically, in multi-

objective optimization, a vector, 𝑋∗= [𝑥1
∗ , 𝑥2

∗ , …, 𝑥𝑛
∗  

] should be found to optimize 𝐹(𝑥) =

[𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥)]𝑇, subject to m inequality 

constraints, 𝑔𝑖(𝑥) ≤ 0  (𝑖 = 1 𝑡𝑜 𝑚)and p equality 
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constraints, ℎ𝑗(𝑥) = 0  (𝑗 = 1 𝑡𝑜 𝑝) where 𝑋∗ ∈ 𝑅𝑛 

is the vector of decision and 𝐹(𝑥) ∈ 𝑅𝑘 is the vector 

of objective functions, both of which must be 

minimized [21].  

The cost functions in multi-objective optimizations 

are frequently at odds with one another. As a result, 

there is no one best solution that maximizes all 

objective functions simultaneously. A set of optimum 

solutions, known as Pareto optimal solutions or 

Pareto front solutions, is one solution to these 

optimization problems [22]. The idea of dominance 

must be defined before the Pareto optimal solution 

can be introduced.  Assume that x1 and x2 are vectors 

in n-dimensional space and f is a cost function. x1 is 

dominated to x2 if the following conditions are 

satisfied: 

{
𝑓𝑖(𝑥1) ≤ 𝑓𝑖(𝑥2)  (∀𝑖 = 1 , … , 𝑘)

𝑎𝑛𝑑
𝑓𝑖(𝑥1) ≺ 𝑓𝑖(𝑥2)  (∃𝑖 = 1 , … , 𝑘)

 (11) 

A Pareto optimal solution is one that is not dominated 

by any other solution in the solution space. A Pareto 

optimum solution cannot be improved in terms of one 

objective without deteriorating at least another  [21]. 

The Pareto optimum set is made up of all of these 

non-dominated solutions, and the Pareto front in the 

objective space is made up of the objective function 

values. The Pareto front, which consists of Pareto 

optimum solutions, is the primary goal of multi-

objective optimization [13]. The Pareto front, which 

consists of Pareto optimum solutions, is the primary 

goal of multi-objective optimization.  

 

7. Robust optimization of friction stir welding 

parameter  
The neural network developed in the previous 

sections is used in a multivariate robust optimization 

algorithm using the modified NSGA-II (Non-

dominated Sorting Genetic Algorithm) [23]. Also, to 

determine the performance of Robust optimization, 

the results of this optimization will be compared with 

the results of deterministic optimization [17]. In 

deterministic optimization, uncertainty factors are 

not considered, and only the main variables are 

optimized. This MOP was formulated as follows: 

 

𝑀𝑎𝑥 ℎ𝑎𝑟𝑑𝑛𝑒𝑠𝑠 (𝑇, 𝑅) 

𝑀𝑎𝑥 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑟𝑒𝑛𝑔ℎ𝑡 (𝑇, 𝑅) 

565 ≤ 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑆𝑝𝑒𝑒𝑑 ≤ 1600 

11 ≤ 𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑒 𝑆𝑝𝑒𝑒𝑑 ≤ 90 

 

 

(12) 

 

The deterministic Pareto front of two objectives from 

our previous work has been shown in Fig. 8 [17].

 

 
Fig. 8. Pareto front of tensile strength and hardness. 

 

In this figure, point A is introduced as the optimal 

answer of deterministic multi-objective optimization 

using TOPSIS results. 

Multi-objective optimization was used to find the 

best friction stir parameters while taking probabilistic 

objective functions into account. The mean and 

variance of ultimate tensile strength, and average 

hardness, have been viewed as objective functions. 

As a result, the problem of robust optimization can be 

stated as follows:  
 

𝑀𝑎𝑥 ℎ𝑎𝑟𝑑𝑛𝑒𝑠𝑠 (𝑇, 𝑅) 

𝑀𝑎𝑥 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑟𝑒𝑛𝑔ℎ𝑡 (𝑇, 𝑅) 

𝑀𝑖𝑛 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 ℎ𝑎𝑟𝑑𝑛𝑒𝑠𝑠 (𝑇, 𝑅) 

𝑀𝑖𝑛 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑒𝑟𝑛𝑔ℎ𝑡 (𝑇, 𝑅) 

565 ≤ 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑆𝑝𝑒𝑒𝑑 ≤ 1600 

11 ≤ 𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑒 𝑆𝑝𝑒𝑒𝑑 ≤ 90 

 

(13) 
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In robust design, parameters change in response to 

previously known probabilistic distribution functions 

centered on a nominal set of parameters. The 

uncertain design parameters, namely traverse and 

rotational speed, are varied with Gaussian 

distributions within the limits of 3 mm/min and 50 

rpm, respectively, in this study. 1000 Monte Carlo 

assessments utilizing the HSS distribution are used to 

carry out the evolutionary process of multi-objective 

optimization. Fig. 9 compares the outcomes of our 

previous conventional optimization work with the 

non-dominated individuals of probabilistic 

optimization in the plane of mean tensile strength and 

mean hardness [17]. In Figs. 10 and 11, such non-

dominated individuals of probabilistic optimization 

results have been depicted in the other planes. It's 

worth noting that the four-objective optimization 

generates a single set of individuals that appear in 

several objective function planes. Therefore, there 

are some points in each plane that may dominate 

others in the same plane. When all four objectives are 

considered at the same time, however, these 

individuals are all non-dominant.

  

 
Fig. 9. Mean of tensile strength versus hardness of SEA 

 

 
Fig. 10. Variance of ultimate tensile strength versus the mean of ultimate tensile strength in four-objective optimization 
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Fig. 11. Variance of hardness versus the mean of hardness in four-objective optimization 

 
Out of all non-dominated four-objective optimization 

processes compromising all objective functions, it is 

now wanted to find a trade-off optimum design point. 

The TOPSIS approach, as stated in Ref. [17], can be 

used to do this. Individuals obtained from four-

objective optimization are subjected to the TOPSIS 

approach. In this method, non-preference for all 

objective functions is taken into account using equal 

weights. As a result, applying TOPSIS to the results 

of four objective optimization problems yields 

optimum point B. Figures 9-11 illustrate these points. 

The probabilistic values of the objective functions for 

both deterministic point (point A) and probabilistic 

point (point B) are shown in Table 4. 

  
Table 4. The probabilistic values of functions for both deterministic and probabilistic points. 

Optimum point 

Rotational 

Speed 

(rpm) 

Traverse 

Speed 

(mm/min) 

Mean 

Tensile 

strength 

(Mpa) 

The variance 

of Tensile 

strength 

Mean 

Hardness 

(HV) 

Variance 

of 

Hardness 

Point A 1182 11 258.6835 181.8485 95.3171 0.8310 

Point B 1467 11 267.0017 1.2341 92.36867 0.00122 

 
Table 3 shows that, in comparison to the previous 

optimization result, robust optimization produces a 

far more robust optimal result with roughly the same 

optimum tensile strength and hardness mean value.  

Table 5 also compares the deterministic values of the 

goal functions for trade-off optimum design locations 

using both deterministic and probabilistic 

methodologies. Tables 4 and 5 indicate that the 

probabilistic and deterministic values of the objective 

functions for the probabilistic point (point B) are 

nearly comparable. As a result, probabilistic 

optimization produces a far more reliable optimum 

solution. For the deterministic point (point A), the 

probabilistic and deterministic values of the functions 

disagree. This demonstrates that non-robust and 

potentially high-risk solutions were obtained without 

addressing uncertainty.  

 
Table 5. The deterministic values of functions for both deterministic and probabilistic points. 

Optimum point 

Rotational 

Speed 

(rpm) 

Traverse 

Speed 

(mm/min) 

Tensile 

strength 

(Mpa) 

Hardness 

(HV) 

Point A 1182 11 264.11 95.99 

Point B 1467 11 267 92.367 

 

It can also be observed in Fig. 8, and Table 4 and 5 

that points B obtained by the probabilistic design 

approach are placed on the Pareto front of the 

deterministic design. This means that the design 

points obtained through robust optimum design are 

identical to those obtained by deterministic design.  
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8. Conclusions 

In this paper, the mechanical properties of the friction 

stir welding (FSW) of AA7075-O to AA5083-O 

aluminum alloys were investigated. First, the 

mechanical and microstructural properties of the 

joints produced with different welding parameters 

were obtained. Experimental results show the joint 

fabricated, using the FSW parameters of 1400 rpm 

(tool rotational speed) and 20 mm/min (traverse 

speed), yielded higher strength properties compared 

with other joints. The association between the FSW 

parameters and the mechanical properties of the weld 

was then successfully modeled using a feed-forward 

neural network. The obtained models were then used 

in a robust multi-objective optimization process. To 

get better results, the standard NSGA-II algorithm 

was modified. Finally, using the TOPSIS approach to 

non-dominated solutions, particular trade-off 

optimum design points were discovered and reported. 

This study shows that robust optimization provides 

very more robust optimum results with nearly the 

same optimum mean value compared to previous 

optimization results. The results of robust 

multivariate optimization showed that the rotational 

speed of 1467 rpm and the traverse velocity of 11 

mm/min is the robust optimal process parameters. 
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