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The study of the exotic bound states in atomically thin 

semiconductors with a transition metal atom has attracted a great 

deal of interest in quantum field theory. The reality of transition 

metal dichalcogenide monolayer materials has been the subject of 

intense concern among theoreticians and experimenters in recent 

years. To obtain transition metal dichalcogenide monolayer 

materials with specific properties; it is extremely important to 

develop particular strategies to obtain specific exotic structures. 

These exotic structures are considered to be in a two-

particle/quasiparticle bound state: exciton and biexciton (exciton-

exciton), exciton-polariton, polariton-phonon. Quantum field theory, 

in its widest sense, is a method to control and achieve reasonable 

goals. Control of such states enables the control of properties and 

access to a range of quantum properties, otherwise inaccessible. The 

relativistic mass spectrum and relativistic constituent mass of 

particles in monolayer transition metal dichalcogenide monolayer 

materials have been calculated using the relativistic Schrödinger 

equation with strong Coulomb-type potential between the electron 

and hole. The ground state of the transition metal dichalcogenide 

monolayer has been studied. Therefore, the investigation may 

indicate promising applications in quantum information processing 

and electronic device technologies based on the semiconductor 

quantum dots system. 
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1. Introduction  

Progress of two-dimensional transition metal 

dichalcogenide monolayer (2D-TMDCM)  

semiconductor quantum dots (such as MX2: 

MoS2, HfSe2, and WSe2) allows exotic 

constructions, including heavy/light exotic 

systems, to be synthesized [1, 2]. Specifically, a 

finite number of excitons can be confined in a 

bounded volume of the order of normal-sized 

two-dimensional materials. The 2D-TMDCM 

materials have recently gained attention in 

theoretical investigations and experimental 

explorations. Theoretical physicists are 

interested in the possibility of controlling the 

properties of excitons in these materials since 

these two-dimensional materials can be used as 

new element bases for future forms and the 

potential applications of 2D-TMDCM materials 

in energy storage, sensing applications, and 

conversion, including electronic devices, 

excitonic solar cells, electro-photo catalysts, 

super batteries-capacitors. Electron-hole 

abnormal atom is the simplest model of 

bounding states to use when studying the 

essential features of two (or perhaps more) 

complicated excitons [3, 4]. Recently, the study 

of excitons in 2D-TMDCM materials has 

progressed significantly. Among excitons in 2D-

TMDCM materials, a heavy exciton is especially 

interesting because of their interaction times and 

the masses of their holes in the bound states 

(electron transportation has been omitted). Many 

new exotic bound states have been recently 

discovered following developments in higher 

energy interactions than bandgap; exotic systems 

have become the main topic of studies on 

semiconductor quantum dots (SQDs) materials 

and semiconductor technology.  

Many theoretical works have focused on 

determining the relativistic mass of predicated 

exotic-bound states and the effects of relativistic 

conditions on them. The present article 

investigates the asymptotic behavior of the 

correlation functions of charged fields and the 

analytic method for determining the mass 

spectrum and binding energy of heavy/light 

excitons in 2D-TMDCM materials. According to 

the results, excitons masses (which I identify as 

masses of hole-electron in a bound state) differ 

from hole and electron masses in a free state. 

This work represents a theoretical and analytical 

effort—the outcome of this effort, however, 

resulted in such fundamental quantities as the 

exotic hole-bound states. This outcome led to 

make several predictions of the excitons in 

semiconductor quantum dots. Single hole-atoms 

are studied using a quantum field theory (QFT) 

and models. I choose to use the strong Coulomb 

interaction and phenomenological type 

potentials, as they play significant roles in SQDs 

physics. The Schrodinger equation solutions for 

these potentials are known and can be obtained 

using various methods. This article calculates the 

bound state energies of exotic heavy/light 

excitons in the ground and excited states. 

Various analytical or numerical approximation 

methods have been developed to compensate for 

the fact that the relativistic Schrodinger equation 

for such a system does not produce solutions. In 

this way, one can demonstrate the oscillator 

representation method (ORM) [5, 6] when 

calculating the mass and binding energy of 

excitons and comparing the results with 

phenomenological potential. This technique can 

be used to accurately describe the characteristics 

of excitons. Thus, it is essential to developing an 

ORM in SQDs physics, as it describes the bound-

state characteristics of exotic particles such as 

exciton diexciton, Trion exciton, and multi-

exciton systems. Mathcad 15.0 M050 and 

MATLAB R2020b software are used to 

determine parameters and calculate their values. 

All computational and mathematical results were 

produced by the author. 

 

2. Exciton such as atomic states 

Exotic atomic states are those that do not qualify 

as common, well-known states. Some examples 

are exciton, biexciton, muonic atoms, and kaonic 

hydrogens. Let’s consider an exciton confined in 

a spherical quantum dot of radius embedded in 

SQDs. The exciton system is a few-body state 

that has been studied within potential 

nonrelativistic models and the frameworks of 

different theoretical/experimental models and 

methods (e.g., the semi-classical model, Frenkel-

exciton model, the unitary model operator, 

microscopic cluster model, 1/N expansion 

method, and the adiabatic approximation, the 

variational method in real space and the 
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effective-mass theory, multi-Gaussian expansion 

method, X-ray absorption, and photoemission 

spectroscopy. However, there is also a method 

for understanding the exciton state as an atomic 

state based on the perturbative methods in 

quantum electrodynamics (QED) at the Nano-

scale. It is widely believed that the ORM and 

QFT are viable perturbative and nonperturbative 

methods for extracting the characteristics and 

properties of exciton systems with charged hole-

electron particles. However, theoretical and 

computational works are also available on exotic 

exciton bound states, especially their wave 

functions and excited states, eigenvalues. 

Recently, several new exotic states were 

observed in experimental investigations of 

higher energy photon-material collisions. These 

experimental observations were collected by the 

National Synchrotron Light Source, Brookhaven 

National Laboratory and the Advanced Photon 

Source, Argonne National Laboratory, the 

Center for Excitonics, Solar Energy Laboratory 

LESO-PB, Scottish Institute for Solar Energy 

Research, and Energy Frontier Research Center. 

A higher aspect and new research fields are 

expected to be given to exciton physics. 

Examples include research on exotic systems’ 

properties and characteristics of excitonic cells 

or quantum excitonic transport, which might 

become possible using new machines with 

abundant energy. Therefore, theoretical studies 

promote awareness and interest in experimental 

interpretations. Following the last experimental 

data, I study the hole-electron system as an 

exotic bound state of a hole and an electron [7, 

8]. For the binding energy of the hole-electron 

state of excitons, I suggest using the Gaussian 

asymptotic behavior of the correlation functions 

of the corresponding field currents. This method 

can determine the energy and mass spectrum in 

the ground and excited states of exotic two-body 

systems with electrostatic potential [9]. I also 

obtained a relativistic correction to the 

constituent mass of the constituent hole and 

electron. The mass spectrum is determined using 

the Schrodinger equation with a mass of 

constituent components hole and electron Figure 

1 and Figure 2. 

 

 
Fig. 1. Side view of the monolayer structures MX2 in the plane XY. 

 

 

 

 

 

 

 

 
Fig. 2. a) Top view of the monolayer structures MX2, where the gray and black points represent the M and X elements. 

b) After the excitation of the MX2 monolayer, the electron transfers from the valance bands to the conduction bands. 

 
Therefore, theoretical studies promote awareness and 

interest in experimental interpretations. Following 

the last experimental data, I study the hole-electron 

system as an exotic bound state of a hole and an 

e- 

h+ 
e- 

h+ 

 
  
                                        CB 

 
Excitation                          Exciton   
                                       bound state 
  
                                        VB 
  
 

             a)                                                                       b) 



Arezu Jahanshir, Journal of Advanced Materials and Processing, Vol. 8, No. 4, Autumn 2020, 45-54 48 

 

electron [7, 8]. For the binding energy of the hole-

electron state of excitons, I suggest using the 

Gaussian asymptotic behavior of the correlation 

functions of the corresponding field currents. This 

method can determine the energy and mass spectrum 

in the ground and excited states of exotic two-body 

systems with electrostatic potential [9]. I also 

obtained a relativistic correction to the constituent 

mass of the constituent hole and electron. The mass 

spectrum is determined using the Schrodinger 

equation with a mass of constituent components hole 

and electron.  

 

3. Exciton in TMDCS 

Exciton in 2D-TMDCM materials is a quantum 

system described by strong Coulomb potential with 

the following range of coupling constants: αs ≈
0.09. I have presented an analytical solution for this 

system using the Schrödinger equation, which 

enabled me to determine excitons characteristics and 

parameters. The Coulomb field becomes present in 

higher energy interactions among photon-materials, 

creates a hole that is transferred inside materials, thus 

forming excitons. Therefore, in this article, the 

Coulomb potential is used to examine the mass 

spectra of heavy/light excitons based on ideas and 

methods related to quantum fields. The Coulomb 

interaction between these oppositely charged 

particles results in the formation of a mutual exciton 

hydrogen atom type bound state [9, 10]; this bound 

state is called the free exciton and by the Bloch, the 

theorem is removed by this electron-hole interaction. 

The exciton moves through the crystal by the 

diffusion process, just like the individual charged 

particles. Thus, the mass spectrum and binding 

energy of excitons were determined through ORM 

and Feynman path integral techniques [5]. Two-

particle m -dimensional Schrödinger equation for 

exciton in 2D-TMDCM materials (is confined in 

spherical space with radius R: R > re.h) reads (see 

Ref. [4] for more details): 

(−
ℏ2

2μe
∗ Δe −

ℏ2

2μh
∗ Δh −

e2

4πεrε0r
+ Ve(r) +

Vh(r)) Φ(r) = E(μe
∗ . μh

∗ )Φ(r)                            

Ve.h(r) = {
0    if 0 ≤ re.h ≤ R
∞          if re.h > R 

                                (1) 

 

where μe
∗ , μh

∗  are the effective constituent masses of 

electrons and holes in the exciton bound state which 

are different from the effective masses me
∗  and mh

∗  

(the rest masses of electrons and holes are me =
0.511MeV, mh = 0), r is the electron-hole relative 

distance concerning the center of the quantum dot, R 

is the radii of the quantum dot. Vc(r) is the strong 

Coulomb interaction between the hole and electron, 

Vh(r), Ve(r) are the potential confinement for a hole, 

an electron; and for hydrogen-like of bound states 

such as free exciton: Vh(r) ≈ 0, Ve(r) ≈ 0. εr is the 

dielectric constant of 2D-TMDCM materials. 

Without loss of generality, the 2D-TMDCM 

materials SQDs energy bandgap may be set equal to 

be zero for convenience. ORM is an alternative 

method of solving total nonrelativistic/relativistic 

radial Schrödinger equations (for exciton) that are 

applied for spherically symmetric Coulomb potential 

and read as follows [4,7]: 

(−
ℏ2

2μe
∗ [

d2

dr2 +
m−1

r

d

dr
] −

ℏ2

2μh
∗ [

d2

dr2 +
m−1

r

d

dr
] +

ℓ(ℓ+m−2)

2μ∗r2 +
ℓ(ℓ+m−2)

2μh
∗ r2 −

e2

4πεrε0r
) R(r) =

E(μe
∗ . μh

∗ )R(r)                                                                (2) 

Then 

(−
ℏ2

2μ∗ [
d2

dr2 +
m−1

r

d

dr
] +

ℓ(ℓ+m−2)

2μ∗r2 −
e2

4πεrε0r
) R(r) =

E(μ∗)R(r)       
1

μ∗ =
1

μe
∗ +

1

μh
∗                                                                     (3)   

where μ∗is the reduced effective mass of the two 

particles, ℓ is the angular quantum number. The 

application of the ORM implies that a wave function, 

being a bound ground state of an exciton system with 

an attractive potential, is expanded over the oscillator 

basis. In most cases, the asymptotic behavior of a true 

wave function for short and large distances should 

coincide with the Gaussian asymptotic behavior of 

the oscillator wave functions. Therefore, I have to 

modify the variables in Ref. [1]. Now, based on the 

asymptotic properties (r → ∞, r → 0) of Gaussian 

type r = q2ρ and Ψ(r) → Ψ(r) = q2ρuψ(q) where 

ρ. u are parameter to be determined; Using the radial 

Laplacian operator in the m-dimensional space one 

can define the radial Laplacian operator in the 𝒟-

dimensional axillary space [4]: 

Δ =
d2

dr2
+

m − 1

r

d

dr
→ Δq =

d2

dq2
+

𝒟 − 1

q

d

dq
 

Under this transformation from equation (1) get 

(ε0 = ℏ = c = 1) 

(
d2

dq2 +
4ρu+2ρ(m−1)+1

q

d

dq
+

4ρ2(u2−ℓ(ℓ+m−2)+u(m−2))

q2 +

+2μ∗ρ2 e2

πεrq2 q2(2ρ−1) +

8μ∗ρ2E(μ∗)q2(2ρ−1)) ψ(q) = 0                          (4) 

So that the modified equation should have solutions 

with the Gaussian asymptotic; in the electrostatic 

potential, such a modification is performed by ρ = 1 
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where the wave function becomes an oscillator one. 

Then equation (4) reads as follows: 

(
d2

dq2 +
4u+2m−1

q

d

dq
+

4(u2−ℓ(ℓ+m−2)+u(m−2))

q2 +2μ∗ e2

πεrq2 +

8μ∗E(μ∗)q2) ψ(q) = 0                                 (5) 

Then i have to require that Coulomb interaction 

Hamiltonian does not contain terms quadratic in the 

canonical variables. This requirement is called the 

oscillator representation condition in ORM; 

therefore, the equation (5) with the term q−2 set to 

zero: (u2 − ℓ(ℓ + m − 2) + u(m − 2)) = 0 and in 

the particular case ρ = 1, I determine s = ℓ. Hence, 

equation (5) is written in the following form (see Ref. 

[7] for more details): 

(
d2

dq2 +
4ℓ+2m−1

q

d

dq
+ 2μ∗ e2

πεr
+

8μ∗E(μ∗)q2) ψ(q) = 0                                             (6) 

Ω = √−8μ∗E(μ∗) is the pure oscillator frequency of 

exciton system and 𝒟-dimensional axillary space 

determines as follows: Δq =
d2

dq2 +
𝒟−1

q

d

dq
⇒ 𝒟 =

4ℓ + 2m + 2. Then based on the ORM condition 

(see Ref. [5] for more details) the canonical variables 

q̂2 =
𝒟

2ω
 and p̂2 =

𝒟ω

2
 are obtained through Wick 

ordering: q̂ =
â−+â+

√2ω
 and p̂ = √

ω

2

â−−â+

2i
, where â+ 

and â− are the creation and annihilation operators, 

respectively. The canonical variables q̂, p̂ 

corresponding to the frequency of the harmonic 

oscillator, therefore, the Hamiltonian of oscillator 

exciton system equation (5) is represented as: 

(
P̂2

2
− 4μ∗q̂2 [

e2

4πεrq̂2
+ E(μ∗)]) ψ(q) = 0 ⇒ 

ε0(E. ω. μ∗) =
𝒟

4
ω − μ∗ e2

4πεr
− 2μ∗ 𝒟

ω
E(μ∗) = 0   (7)  

 where αs =
e2

4π
 is the running coupling constant. 

Now stand on oscillator conditions ε0(E. ω. μ∗) = 0 

and ω
dε0(E.ω.μ∗)

dω
=0, one can define the minimum 

ground state energy of the exciton system as a result 

of the zero approximation (see Ref. [5] for more 

details). Therefore, the mass of exciton bound state in 

the 2D-TMDCM materials, oscillator frequency ω, 

reduced mass μ, energy eigenvalue E(μ) of the 

ground, and radial excitations states are defined in 

ORM using the following equation: 

E(μ∗) =
ω2

8μ∗ −
e2ω

2𝒟πεr
,               ω =

2e2

𝒟πεr
μ∗       (8)      

And the steepest descent point method, the exciton 

bound state relativistic mass is defined as [7]: 

M = √me
∗2 − 2μ∗2

dE(μ)

dμ
+ √mh

∗2 − 2μ∗2
dE(μ)

dμ∗

+ μ∗
dE(μ∗)

dμ∗
+ E(μ∗) = 

√me
∗2 + μ∗2 (

e2

𝒟πεr
)

2

+ √mh
∗2 + μ∗2 (

e2

𝒟πεr
)

2

−

μ∗ (
e2

𝒟πεr
)

2

                                                                 (9) 

And the relativistic constituent masses of hole and 

electron read as: 

μe=√me
∗2 + μ∗2 (

e2

𝒟πεr
)

2

,   μh=√mh
∗2 + μ∗2 (

e2

𝒟πεr
)

2

  (10) 

The reduced mass of exciton bound state is 

determined by the following equation [7]: 
1

μ
=

1

√me
∗2+μ∗2(

e2

𝒟πεr
)

2
+

1

√mh
∗2+μ∗2(

e2

𝒟πεr
)

2
                     (11)  

The bound state mass and the effective constituent 

masses of electron and hole in the exciton bound state 

(masses of constituent particles) are determined from 

equations (9) and (10), respectively. Now I apply 

results to determine the characteristics of the bound 

states defining  exciton with the effective masses and 

dielectric constant εr∥, εr⊥ (all essential taken 

data contained in Table 1). The numeric results are 

presented in Table 2. It is clear from Table 2, that the 

effective constituent mass of an electron and a hole 

differ from the masses in a free state and differ from 

effective masses (constituent mass of particles are 

larger). The mechanism for arising of the effective 

constituent mass of the relativistic exciton bound 

state forming electron and hole is explained in (9) by 

taking into account relativistic corrections. In Table 

2, I also reported the ground state mass of exciton 

obtained theoretically through relativistic 

corrections. For example, our results for the mass of 

2D-TMDCM materials such as 2H-MoS2, 2H-WS2, 

and 1T-HfS2  are 0.146, 0.356, and 0.950, 

respectively, while their experimental values given in 

[12]  are: 0.14, 0.11, and 0.39.   
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Table 1. The effective masses (in units of MeV), in-plane εr∥ and out-of-plane εr⊥dielectric constant or relative 

permittivity ( εr =


0
) of 2D-TMDCM [11, 12]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 2. Mass spectra 𝑀(in units of 𝑀𝑒𝑉), the constituent effective mass of an electron 𝜇𝑒

∗  and a hole 𝜇ℎ
∗  of 2D-

TMDCM materials: MX2 QDs corresponding to the in-plane/out-plane 𝜀𝑟||/𝜀𝑟⊥ dielectric constant 

2D-TMDCM  

(𝑴𝒆𝑽) 

𝜺𝒓|| 𝜺𝒓⊥ 

𝝁𝒆 𝝁𝒉 𝑴 𝑴[12,13] 𝝁𝒆 𝝁𝒉 𝑴 

2H-MoS2 0.384 0.388 0.416 0.14 0.293 0.298 0.543 

2H-MoSe2 0.395 0.437 0.378 0.13 0.264 0.323 0.531 

2H-MoTe2 0.677 0.675 0.322 0.16 0.362 0.357 0.605 

2H-WS2 0.295 0.279 0.356 0.11 0.246 0.226 0.431 

2H-WSe2 0.330 0.315 0.345 0.11 0.261 0.242 0.443 

1T-HfS2 0.795 0.473 0.950 0.39 0.751 0.394 1.030 

1T-HfSe2 1.065 0.596 0.990 0.49 0.982 0.431 1.206 

 

 

4. Relativistic bohr radius of exciton 
To calculate the relativistic radius of the exotic 

system with the circular orbits of a hydrogenic atom; 

i follow the ORM based on the approach used by 

Bohr for the nonrelativistic systems. The Coulomb 

type potential with the electrostatic field of attraction 

between the electron and nuclear core, intended 

as 𝐹𝑐 = −𝛻𝑈 must equal −𝛻𝑈 = 𝑚𝑟3𝜛2, by 

performing Bohr energy and Coulomb potential, I 

obtain the Bohr radius for hydrogen-like atom: 𝑟𝐵 =
4𝜋

𝑒2𝑚𝑒
𝑛2 ≅ 0.053𝑛𝑚. 𝑛 is the principal quantum 

number. I can construct a nonrelativistic Bohr model 

for an exotic exciton system. As far as we know, the 

motion of the exciton in the QDs has a relativistic 

behavior, and one of the motivations for theoretically 

studying exciton is to determine the relativistic Bohr 

radius without using and the relativistic kinetic 

energy and the Dirac model. Using the relativistic 

kinetic energy with the Bohr quantization rule, I can 

determine the relativistic radius of the orbit [13]:   

𝑟𝐵
𝑟𝑒𝑙 =

1

1+𝛾

8𝜋

𝑒2𝑚𝑒
𝑛2 =

2

1+𝛾
𝑟𝐵 < 𝑟𝐵                                                                                                         

(14) 

where 𝛾 ≥ 1 is the Laurence factor. The next step is 

to determine the exciton Bohr radius systems in the 

2D-TMDCM QDs materials. Bohr radius of exciton 

describes the relative distance between electron/hole 

particles and has a pronounce on the properties of the 

exotic system. In the experimental aspect, the exciton 

Bohr radius in 2D-TMDCM materials was 

determined and it is several times larger than the 

theoretical methods. In this section, I investigate the 

exciton Bohr radius in 2D-TMDCM materials with a 

1L TMDCMs 

 

Effective mass 

(𝐌𝐞𝐕) 
𝛆𝐫 

𝐦𝐞
∗  𝐦𝐡

∗  𝛆𝐫⊥ 𝛆𝐫|| 

2H-MoS2 0.55 0.56 6.4 15.1 

2H-MoSe2 

 
0.49 0.61 7.4 16.5 

2H-MoTe2 0.65 0.64 8.8 19.5 

2H-WS2 0.46 0.42 6.3 13.6 

2H-WSe2 0.48 0.44 7.5 15.1 

1T-HfS2 1.4 0.63 5.6 10.2 

1T-HfSe2 1.8 0.51 6.7 13.9 
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strong Coulomb coupling constant 𝛼𝑠 ≈ 0.09 in the 

framework of ORM. The exciton Bohr radius 

formula reads: 𝑟𝑒𝑥𝑐 =
𝑚𝑒𝜀𝑟

𝑚∗ 𝑛2𝑟𝐵. Where 𝑚∗ is the 

nonrelativistic reduced mass of the exciton system. 

From the previous section, the exciton Bohr radius 

with effective masses of electron and hole in 2D-

TMDCM materials reads as follows: 

𝑟𝑒𝑥𝑐 =
𝑚𝑒

∗ 𝑚ℎ
∗

𝑚𝑒
∗ +𝑚ℎ

∗ 𝑚𝑒𝜀𝑟𝑛2𝑟𝐵                                                 (15)  

 Using the (15) and (10), the relativistic exciton Bohr 

radius is defined as [13]: 

𝑟𝑒𝑥𝑐
𝑟𝑒𝑙 =

𝑚𝑒

𝜇∗ 𝜀𝑟𝑛2𝑟𝐵 =
𝜇𝑒

∗𝜇ℎ
∗

𝜇𝑒
∗+𝜇ℎ

∗ 𝑚𝑒𝜀𝑟𝑛2𝑟𝐵                        (16) 

Here without loss of generality, the relativistic Bohr 

radius may be set equal to nonrelativistic (𝑟𝐵 ≅ 𝑟𝐵
𝑟𝑒𝑙) 

for convenience. Exotic Bohr radius with heavy/light 

hole in monolayer, bilayer, and multilayer QDs 

materials are currently fascinating subjects in SQDs 

physics. Therefore, i calculate the relativistic Bohr 

radius of circular orbits of an exotic exciton, and the 

numeric results are presented in Table 3. The 

mechanisms of contraction in the exciton Bohr radius 

are explained in (10). According to the relativistic 

theory of space-time and the relativistic equation 

(10), the exciton Bohr radius is more contracted than 

that of the classical exciton Bohr radius. The result is 

consistent with the fact that the absolute value of 

relativistic energy of exciton (i.e., an electron in the 

exciton system) is more positive than a 

nonrelativistic one. 

  
Table 3. The relativistic 𝑟𝑒𝑥𝑐

𝑟𝑒𝑙  (in units of 𝑛𝑚) and nonrelativistic 𝑟𝑒𝑥𝑐  Bohr radius (in units of 𝑛𝑚) of exciton  in 2D-

TMDCM materials: MX2 QDs corresponding to the in-plane/out-plane 𝜀𝑟||/𝜀𝑟⊥ dielectric constant 

2D-TMDCM 

materials 

𝜺𝒓|| 𝜺⊥ 

𝒓𝒆𝒙𝒄
𝒓𝒆𝒍   𝒓𝒆𝒙𝒄 𝒓𝒆𝒙𝒄

𝒓𝒆𝒍  𝒓𝒆𝒙𝒄 

2H-MoS2 2.115 2.880 1.170 1.221 

2H-MoSe2 2.151 3.213 1.378 1.441 

2H-MoTe2 1.552 3.183 1.324 1.444 

2H-WS2 2.567 3.278 1.447 1.519 

2H-WSe2 2.534 3.481 1.615 1.729 

1T-HfS2 0.930 1.242 0.586 0.682 

1T-HfSe2 0.983 1.851 0.605 0.892 

 
The electron is more bound to the quasiparticle, then 

the exciton Bohr radius must be smaller than the 

nonrelativistic exciton radius, but for exciton velocity 

much less than the speed of light in semiconductors, 

the relativistic radius tends to that of classical radius. 

In Table 3, i determined the relativistic Bohr radius 

of the exciton.  For example, our results for the 2H-

MoS2, 2H-WS2, and 1T-HfS2 are 2.567 and 0.930, 

respectively, while the nonrelativistic values are: 

2.88, 3.278, and 1.851.   

5. EXciton wave function 
Now, let’s formulate the ground state wave function 

in the 2D-TMDCM materials. As we know, the wave 

function of the ground state of an exotic atom in 

terms of ORM has the form [5]: 

|𝛹0⟩ = ∏ (
𝜇∗𝜔0

𝜋
)

𝒟
4

𝑒−
𝜇∗𝜔0

2
𝑞𝑖

2
𝐷
𝑖=1                                     (17) 

In the particular case ℓ = 0, we have the axillary 

space 𝒟 = 4, and 𝜔0 =
𝑒2

2𝜋𝜀𝑟
𝜇∗, then the ground state 

wave function reads
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Fig. 3. Probability density of exciton in a monolayer 2H-MoS2 versus  𝑟. With and without the relativistic effective 

mass of exciton corresponding to the in-plate 𝜀𝑟|| (left) and to the out-plate 𝜀𝑟⊥ (right) directions of dielectric constant. 

 
[ 

|Ψ0⟩ =  (
μ∗ω0

π
) e

−
μ∗ω0

2
q2

                                                 (18)    

And satisfies the well-known conditions ⟨Ψ0|Ψ0⟩ =
1 and â−|Ψ0⟩ = 0. All radial excited states ℓ ≠ 0 can 

be determined by |Ψℓ⟩ = (â+â+)ℓ|Ψ0⟩. I study the 

wave function of excitons in the 2D-TMDCM 

materials and consider for 2H-MoS2 with ℓ = 0, 

using ORM. In Fig. 1, the behaviors of the radial 

wave functions of exciton with the relativistic and 

nonrelativistic effective mass of an electron and a 

hole in different directions in the monolayer 2H-

MoS2 are plotted. The probability density in Figure 3, 

is given by taking the μ∗ and m∗ values in the exciton 

wave function: |Ψ0⟩rel = (
μ∗ω0

π
) e−

μ∗ω0
2

q2

, 

|Ψ0⟩nonrel = (
m∗ω0

π
) e−

m∗ω0
2

q2
. The plot gives us the 

likelihood of finding an exciton system in the 

monolayer 2H-MoS2 with |Ψ0⟩rel is than |Ψ0⟩nonrel 

and shows that the amount of energy carried by a 

wave function is related to the amplitude of the 

|Ψ0⟩rel. The amplitude of relativistic wave function 

|Ψ0⟩rel is larger than|Ψ0⟩nonrel, i.e., an exciton 

system in the monolayer 2H-MoS2 with relativistic 

effective masses has a higher amount of displacement 

than the other one (with nonrelativistic effective 

masses).  

 

6. Results and discussion 
Exciton parameters have been studied in higher 

energy interactions than Coulomb potential and 

bandgap using several theoretical and experimental 

models. The present paper proposed a method for 

theoretically determining the relativistic exciton 

Bohr radius, relativistic mass, and energy eigenvalue 

of the ground state within the framework of the QFT, 

QED. An analytic expression was given for masses 

of exotic systems while considering relativistic 

corrections. I computed the masses and energy of 

charged/quasi-charged bound states by considering 

the system as a hole core and electron. I have 

theoretically investigated the features of the exciton 

Bohr radius of charge carriers in the 2D-TMDCM 

materials. The calculation was performed using the 

bound state method to solve the Schrödinger equation 

for the exciton system. In the Radial Schrödinger 

equation, the Wick-ordering method called ORM is 

proposed to calculate the mass spectrum and 

relativistic Bohr radius of the exciton system in the 

2D-TMDCM materials for an electrostatic potential 

allowing the existence of an electron-hole bound 

state. I have calculated the relativistic exciton Bohr 

radius values for free and pure 2D-TMDCM 

materials corresponding to the in-plane and out-of-

plane directions. I have considered 2D-TMDCM 

materials: molybdenum (Mo), tungsten (W), hafnium 

(Hf) based on 2D-TMDCM materials. The 

motivation for this research comes from a recent 

report on the practical realization of excitons in 2D-

TMDCM materials. In this context, I present the 

calculated electron-hole relativistic radius and 

relativistic mass spectrum. Quantitative 

characterization of bound state constituent effective 

mass of the electron-hole, via the corresponding 

charged current in QFT is given.  I have calculated 

and determined the theoretical value for the ground 

state wave function of the exciton in 2D-TMDCM 

systems. The wave function of bound states that can 

be achieved in the SQDs is important and may 

provide potential applications in quantum 

information processing, excitonic solar cells, electro-

photo catalysts, super batteries-capacitors, and also 

the characteristics of exciton in  SQDs studied. I have 

defined that the in-plane dielectric relativistic Bohr 

radius is smaller than the out-of-plane dielectric 

response for all the 2D-TMDCM materials, and it is 

-15 -5 5 15

|(r)|2

r   (Mev)-1
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-15 -5 5 15
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smaller than the nonrelativistic Bohr radius. The 

calculated exciton Bohr radius, the mass spectrum, 

effective constituent masses of the electron, and hole 

parameters for ORM are provided in Table 2 and 

Table 3.  

As expected, Table 3 shows that the exciton Bohr 

radius of the exciton system decreases. That opens 

the door to even more applications in quantum 

information technology on a quantum level. In Table 

2 and Table 3, i have described the relationship of the 

exciton mass and exciton Bohr radius in the 2D-

TMDCM materials, without spin-spin or spin-orbital 

interactions. This result could revolutionize the way 

engineers approach electronics. It can be concluded 

that theoretical results can help scientists to study 

excitons' extraordinary properties in order to design 

more energy-efficient electronic systems and find a 

way to better control excitons moving in 

semiconductors, Ultrafast THz spectroscopy, and 

Magneto-Optical Investigation, and Ultrafast THz 

spectroscopy, Magneto-Optical investigation, and 

Ultrafast optical spectroscopy. Also, they can find a 

new way to polarize the exciton currents in higher 

energies.  

 

7. Conclusion 
I have studied exciton in the 2D-TMDCM materials 

under the electrostatic field. The energy eigenvalue, 

the frequency, and effective relativistic masses of the 

exciton are established and calculated in the 

framework of the oscillator representation method. 

This result leads us to conclude that the behavior of 

the exciton, can be modeled by QFT as a 

particle/quasiparticle bound state. The investigation 

may become an invaluable help in electronic devices 

and quantum information processing based on the 

SQDs materials. I determined the ground state 

relativistic Bohr radius of exciton which is inside the 

2D-TMDCM materials: MX2 QDs materials using 

the oscillator representation method, the effective 

mass, and considering a hydrogenic wave function 

for the ground state. I take into account the presence 

of relativistic Bohr radius and effective constituent 

masses dependent on the electron-hole relativistic 

motion and direction of the dielectric constant. The 

results may be resumed thus: (i) the relativistic 

behavior of electron-hole motion in the 2D-TMDCM 

materials decreases the exciton Bohr radius for all 

MX2 in QDs materials. (ii) the effective relativistic 

mass of the exciton system is larger than the 

nonrelativistic effective mass. (iii) the amplitude of 

relativistic wave function |Ψ0⟩rel is larger 

than|Ψ0⟩nonrel. I hope that these results will motivate 

future experimental work in this direction that will 

confirm my predictions. 
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