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In this work, for better understanding of drug delivery systems,
blood flow over a ceramic nanoparticle is investigated through
microvessels. Drug is considered as a nanoparticle coated with the
rigid ceramic. Due to the low characteristic size in the microvessel,
the fluid flow is not continuum and the no-slip boundary condition
cannot be applied. To solve this problem lattice Boltzmann method
is used with the slip boundary condition on the particle surface.
Furthermore, the effects of Reynolds number, Knudsen number and
stiffness (which depends on the kind of material) on drag coefficient
are investigated in this paper. The present results show that lattice
Boltzmann method can be used accurately to simulate the effects of
different parameters on drug delivery. Moreover, the results show
that the accuracy of lattice Boltzmann method is the same as second
slip boundary condition. Also, the effect of nanoparticle stiffness as
the important parameter on the period of time to deliver drugs in
system is demonstrated.
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1. Introduction
Although nanoparticles are generally considered
an invention of modern science, they actually
have a very long history. In according to the
numerical progress in the world, micro and
nanoscale particles have an increasing interest in
engineering and scientific researches. These
particles are very important and they have
different environmental, drug delivery, mass
transfer and industrial applications [1].

There is increasing optimism that
nanotechnology, as applied to medicine, will
bring significant advances in the diagnosis and
treatment of disease. Nanoparticles offer
advantages of protecting the drugs within the
particles for reduced effects of plasma or body
fluid induced deactivation or degradation [2].
So, engineered nanoparticles are an important
tool to realize a number of these applications. It
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has to be recognized that the particle physical
properties have effect on particle transport in
drug delivery systems. One of the most
important properties is material stiffness. Hence,
the journey of particles in blood flow is
determined by a combination of physical,
chemical, and mechanical factors. Many of these
factors are influenced by particle geometry,
morphology and stiffness. Recent researches
have focused on the role of particle physical
properties in influencing particle transport in the
flow [2].

Kulkarni and Feng [3] investigated the effects
of the particle size and surface coating on the
polymeric nanoparticles for drug delivery. Their
results showed that the nanoparticles of smaller
size (<200nm) can escape from recognition so
they can stay in the body for a long time. Kumar
and Graham [4] studied the effects of variety of
parameters including the capillary number,
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rigidity ratio, volume fraction, confinement ratio
and number fraction in drug delivery systems.
They showed that the stiff particle experiences
much larger cross stream displacement than the
floppy particle. Shukla et al. [5] investigated the
effects of nanocarrier aspect ratio on bio
distribution in the setting of drug delivery. They
used tobacco mosaic virus components to derive
the rigid, soft matter nanoassemblies. They
showed the effect of aspect ratio in vivo and in
vitro.  Huang et al. [6] analyzed the effect of
nanoparticle stiffness on cellular uptake. They
found that a stiffer substrate results in a higher
total cellular uptake on a per cell basis, but a
lower uptake per unit membrane area.

There have been very few investigations for
modeling nanoparticle in microvessels to show
the effect of material and shape on drag
coefficient. So, the aim of this paper is
simulating the flow over a ceramic nanoparticle
to show the effect of stiffness. This numerical
simulation can be useful to predict the kind of
material and shape for nanoparticle as the drug
coating. In fact Understanding how the shape of
the particles influences their lateral migration
within pressure driven flows could help
enhancing the design of more effective drugs.

It should be mentioned that in micro and
nanoscale particles, the characteristic size
decreases down and it becomes a value
comparable to the mean free path of the
molecules. In this situation the fluid flow is not
continuum and the Navier-Stokes equations
with no-slip boundary condition cannot be
applied. Because the rarefaction effect becomes

important and slip on the solid surface could
affect the force. There are some methods to
analyze the flow over nanoparticles. The
numerical method which is not based on
continuity of flow should be used to solve the
flow over these particles. Lattice Boltzmann
method (LBM) is an effective computational
tool for the simulation of complex flows which
continuity of flow does not impose on it.

In this paper, the flow over the ceramic
nanoparticle is simulated and the effects of
Reynolds number, Knudsen number and
stiffness on the dragcoefficient are studied as the
important parameters in drug delivery systems
by LBM.

2. Lattice Boltzmann method
In this study, LBM is used as the mesoscopic

computational methods to simulate fluid flow.
Although the lattice Boltzmann method has been
derived from the lattice gas, but He and Lue [7]
showed that this method could be gained from
Boltzmann equation. In this method the fluid is
considered as number of particles which collide
and stream on specific links. In 2D geometry,
D2Q9 model usually has been used as a lattice to
discrete the fluid. By using Bhatnagar-Gross-
Krook (BGK) approximation, the related
equation can be derived as [8]:
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Where τ is the relaxation time, kf is

distribution functions and eqf is equilibrium
distribution function expressed as [8]:
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The flow quantities can be evaluated as [8]:
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The kinematic viscosity in the Navier-Stokes
equation is related to the relaxation time by the
following equation [8]:
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When geometry of body and computational
domain is axisymmetric, Eq.1 should be
modified. In fact two terms should be added in
the right hand side of Eq.1, these terms are [9]:
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where r is radial distance from center of
sphere, and ru and r are radial component
velocity and derivative, respectively. Horizontal
component velocity and derivative was shown
by xu and x , respectively.

3. Boundary conditions
We use constant velocity and pressure
respectively for inlet and outlet of microvessels
lumen which is employed by Zou-He method
[10].For the curved surface (nanoparticle) the
method proposed by Bouzidi [11] is
implemented in macro scale.

When the characteristic length of flow is
comparable to the mean free path of fluid, the
rarefaction affect must be considered. For this
situation, the no-slip boundary condition cannot
be applied for wall boundaries. The Knudsen
number (Kn) are used to identify the rarefied
phenomena. The Kn number is the ratio of the
mean free path (λ) to the characteristic length (L)
of the flow. In flow over the sphere
characteristic length is diameter of sphere (D).

In micro and nanoscale flow, the continuum
assumption fails and the Navier-Stokes
equations with no-slip boundary conditions
cannot be applied. In such situations
intermolecular collisions play a prominent role
and the flow properties will be affected by the
Knudsen number. There are some slip boundary
conditions for the slip flow regime. The first
order slip boundary condition is [12]:

  twallfluidslip

R.Kn2
)u()u(u 




  (7)

In this formula t is tangential stress, R is

sphere radius and σ is accommodation
coefficient [12], μ is viscosity and u is the

tangential velocity.
Two applicable types of the second order slip

boundary conditions are [12]:
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where 0,t is the tangential stress in no slip

regime. In micro and nanoscale problem by
LBM the relaxation time should be computed by
Knudsen number instead of viscosity as follows
[8]:

5.0N.Kn  (10)
N refers to a number of nodes along the

characteristic length. For a constant Mach
number (Ma=v/cs), the Kn and Re (  /VDRe )
numbers are inversely proportional. For general
flow the relation of Kn number, Re number and
Ma number is according to [12]:
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Thus Re number cannot change arbitrary for a
given Ma number in the slip flow regime stands.
For incompressible flow, Ma number must be
less than 0.2, thus in selection of Kn and Re
value should be noted that Ma is less than 0.2.

In the slip flow regime the boundary
conditions should be changed. The DMBC
method (discrete Maxwell boundary condition)
which is a straight forward discretization of
Maxwell’s diffuse reflection boundary condition
in kinetic theory was used for slip boundary
condition.

The slip correction factor is a very important
parameter which considers the slip effects on the
drag force of acting on spherical nanoparticle.
The slip correction factor which is called
Cunningham correction factor can be defined as
[13]:
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where
0DC is the no-slip drag coefficient and

sDC is the slip drag coefficient. One of the most

important equations to compute Cunningham
correction factor is [14]:
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In the present study, the immersed boundary
method (IBM) is used to simulate the RBC
deformations.
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To understand the effects of elastic force on
the behavior of nanoparticle, the following
dimensionless parameter is defined as [15]:

s

m

E

U
G

 (14)

where mU is the mean velocity of plasma, sE
is the membrane elastic modulus and. G shows
the competition between the viscous force in the
plasma flow and the elastic resistance force of
the membrane.

The hydrodynamic force induced by a fluid
flowing over a wall surface can be defined by
the momentum exchange method. The total
force acting on a solid body is obtained as [16]:
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where   exx sf
is an indicator, which is

zero at fx (fluid node) and one at sx (solid node).

The analytical drag coefficient (
AU2/1/FC 2

D  ) for creeping flow over a
sphere in macro scale is [17]:
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There are experimental results for the flow
over a sphere in macro scale which was used to
check the LBM results [17]:
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4. Results and discussion
4.1 analytical analysis for creeping flow over
a sphere
In micro and nanoscale, there are different
analytical solutions which were used as a
reference to check the numerical results. By
using the first order slip boundary condition
(Eq.7) for Re<<1, one of the analytical solutions
can be derived.

In fact after solving the Biharmonic equation
( 04  ) for creeping flow, the drag coefficient
was derived as [18]: (It should me mentioned
that σ=1)
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Other analytical solutions could be derived by
using two second order slip boundary conditions
(Eqs.8, 9). The drag coefficients which were
derived as follows respectively:
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Figure 1 shows that the drag coefficient which
was computed by using the second order slip
boundary condition has more accuracy and it is
in good agreement with direct numerical
simulation (Monte Carlo).

Fig 1. drag coefficient distribution for various Knudsen number in creeping flow over sphere
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4.2 Numerical results
In the present study, the laminar, Newtonian and
incompressible flow is considered in the
microvessels over a ceramic nanoparticle as
illustrated in Fig. 2. The density and viscosity of
the blood plasma is set to be 3/1025 mkg
and sm /1017.1 26 .

Computational grids were considered as
360×700. These solution domain and
computational grids were the best grids which
were derived after using different computational

grids and solution domains. For the left and right
boundary condition, the velocity inlet and
pressure outlet was considered respectively.
Upper and lower boundary conditions were
supposed respectively as far distance boundary
and symmetrical boundary. On the upper
boundary xu is equal to the velocity inlet and yu

is zero. All these boundary conditions were
treated by Zou and He method [10]. DMBC has
been considered to impose the curved and slip
boundary conditions over the sphere.

Fig 2. computational domain

To validate the presented results at first the
flow over a sphere was simulated in macro scale.
In Table.1 the drag coefficient for different Re
numbers was computed in compare with
analytical solution and implement correlation. It

is clear for Re<1 the result has a good agreement
with analytical solution and for Re>1 there are
good agreement between computational and
correlation results.

Table 1. drag coefficient for macro scale for various Reynolds number

method
Re

LBM Eq.16 Eq.17

Re=0.125 192.05 192 196.84
Re=0.8 30.35 30 33.57
Re=20 2.6613 ---- 2.6969
Re=30 2.08 ---- 2.1259

It should be mentioned that in microvessel, the
flow velocity for transporting the material
between plasma and cells is low [19] and the
Reynolds number is less than 1.

In Table.2 the drag coefficient in nanoscale is
shown in comparison with the result in macro
scale and analytical result for the creeping flow
over a sphere. In according to the result, slip
could decrease drag coefficient in every Re
number.

In according to Eq.19, the drag coefficient for
Re=0.125 is 173.87. It is clear that the result
which is derived by DMBC has a good

agreement with analytical solution which was
derived by second order slip boundary condition
in Re<<1. As mentioned before, the second
order slip boundary condition is more accurate
than the first order one, so it is clear that the
accuracy of DMBC method is similar to the
second order slip boundary condition. In fact the
present results show that the accuracy is more
than the first order boundary condition so LBM
is the suitable numerical method to simulate the
drug through microvessels.
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Table 2. drag coefficient for nano and macro scale

DMBCNo slipBoundary
condition

Re (Kn)
178.3192.050.125 (0.05)

24.530.350.8 (0.09)

In Fig.3 the influence of Re number and Kn
number on drag coefficient is shown. This figure
shows that Re and Kn numbers could decrease
drag coefficient. It is obvious that Re number
has more effect on drag coefficient in
comparison with Kn number. In fact the small
changes in Re number could have a big
influence on the drag coefficient, although the
small changes in Kn number have a small
influence on drag coefficient. Drag coefficient is
a dimensionless parameter which is shown the
resistance of a ceramic nanoparticle in the blood.

Low drag coefficient for drug delivery systems
means, low period of time to travel through
microvessels. Reduce the Re number, shows the
fluid flow in the narrower microvessels, so the
drag coefficient increases through the small
vessels.

In Table 3 the slip correction factor is shown
in compare with Cunningham factor. As it is
shown the present results are in good agreement
with the results presented by Moshfegh et al.
[20] so, LBM can be used as an efficient
numerical method to simulate nanoparticle
transfer in microvessels. As it is shown Eq. 13,
although Re number is an important parameter
to affect the slip correction factor, but it was not
considered in Cunningham factor. Moreover, as
it is shown in Table 3 the accuracy of the
Cunningham factor decreases by increasing Re
number.

Fig 3. the effect of Kn and Re numbers on drag coefficient of sphere

Table 3. the effect of Re numbers on slip correction factor

D
Kn








vD
Re FVM

[20]
Present study

LBM
Cunningham

factor(Eq.13)

0.025

0.125
0.25
0.5
0.75

1

-----
1.1

1.118
1.16
1.2

1.0625
1.09

1.135
1.18
1.23

1.0628

0.05

0.125
0.25
0.5
0.75

1

------
1.175

1.2
1.24

1.275

1.108
1.125
1.175
1.225
1.27

1.1257
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In the following, the effect of stiffness on drag
coefficient is studied by changing the
nanoparticle coating. As mentioned before,
presented results are considered the nanoparticle
coated with the rigid ceramic in the blood flow.
Ceramic nanoparticles are rigid and they are not
able to suffer deformation in order to navigate
into tiny vessels. Table 4 shows the effect of
stiffness on drag coefficient and consequently
on drug delivery in microvessels. In order to
investigate the effect of stiffness on nanoparticle
transfer, we considered a polymer nanoparticle
as the drug coat in drug delivery systems. As
shown in Table 4, the drag coefficient decreases

by increasing flexibility. The more flexible drug,
shows low resistance in the blood flow so, it can
travel through microvessel sooner than the
ceramic nanoparticle and also, it can stay in the
vessels longer than ceramic nanoparticle. It
should be mentioned that the filo micelle
research in the lab of Discher et al. [21] has
shown that the flexibility of high aspect ratio
worm-like filo micelles causes them to stay in
circulation for a long period of time, possibly by
avoiding interaction and uptake by the
macrophages. In fact the present numerical
results are in good agreement with the previous
experimental result.

Table 4. the effect of stiffness on drag coefficient (G=0.9)

Re (Kn) No slip DMBC (rigid) DMBC (flexible)
Re=0.5 (0.06) 48.02 44.3 41.82

Re=0.75 (0.06) 31.91 29.7 27.05

5. Conclusions
The lattice Boltzmann method is utilized to
study the fluid flow over a ceramic nanoparticle
in drug delivery systems. The effects of
Reynolds, Knudsen number and stiffness are
analyzed in the microvessels. At first by
presenting the analytical solution, we showed
that the second order slip boundary condition is
more accurate than the first one and LBM can
provide solution of the same accuracy as the
analytical results derived by using boundary the
second order slip boundary condition.

The present results demonstrate that Kn and
Re numbers affect the drag coefficient and
consequently the slip correction factor. In fact
they increase the slip correction factor. It should
be mentioned that the effect of Re number is
more than Kn number. Furthermore, the effect
of stiffness is studied by changing the material
of nanoparticle coat in the flow. Ceramic is
considered as the rigid material and polymer as
the elastic one. The results show that the flexible
nanoparticle can travel through microvessel
sooner than the rigid material, because the
rigidity increases the drag coefficient and
consequently the resistance of the flow.
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