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The present paper provides a semi-analytical solution to obtain the
displacements and stresses in a functionally graded material (FGM)
rotating thick cylindrical shell with clamped ends under non-uniform
pressure. Material properties of cylinder are assumed to change
along the axial direction according to a power law form. It is also
assumed that the Poisson’s ratio is constant. Given the existence of
shear stress in the thick cylindrical shell due to material and pressure
changes along the axial direction, the governing equations are
obtained based on first-order shear deformation theory (FSDT).
These equations are in the form of a set of general differential
equations with variable coefficients. Given that the FG cylinder is
divided into n homogenous disks, n sets of differential equations
with constant coefficients are obtained. The solution of this set of
equations, applying the boundary conditions and continuity
conditions between the layers, yields displacements and stresses.
The problem was also solved, using the finite element method
(FEM), the results of which were compared with those of the multi-
layered method (MLM). Finally, some numerical results are
presented to study the effects of applied pressure, non-homogeneity
index, and power law index of FGM on the mechanical behavior of
the cylindrical shell.
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1. Introduction
Functionally graded materials (FGMs) are
advanced composite materials whose
mechanical properties vary continuously from
one surface to another at macro level[1]. They
are now developed for general use as structural
components in extremely high-temperature
environments. The ability to predict the
response of FGM shells when subjected to
thermal and mechanical loads is of prime
interest to structural analysis[2-5].

Elastic analysis of FGM thick-walled
cylindrical shells has been intensively
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investigated in the literature. Lame[6] studied
the exact solution of a thick homogenous and
isotropic cylinder under inner and outer
pressures. Assuming the cross shear
effect,Naghdi and Cooper[7] formulated the
shear deformation theory (SDT). Mirsky and
Hermann [8] derived the solution of thick
cylindrical shells of homogenous and isotropic
materials by using the first shear deformation
theory (FSDT). The plane strain and anti-plane
shear problems for the general multi-layered
composites were considered by Erdogan and
Gupta [9].  Shirakawa [10] studied the effect of
shear deformation on the displacements and
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stresses in a cylindrical shell under a static load.
Reddy [11] presented a higher-order shear
deformation theory of plates accounting for the
von Karman strains. This theory contains the
same dependent unknowns as the Hencky-
Mindlin type FSDT and accounts for parabolic
distribution of the transverse shear strains
through the thickness of the plate. Horgan and
Chan[12] investigated the effects of material
inhomogeneity on the response of linearly
elastic isotropic hollow circular cylinders or
disks under uniform internal or external
pressure. Niordson[13] derived the two-
dimensional shell equations for a circular
cylindrical shell by means of an asymptotic
expansion of the three-dimensional elastic state.

Using a profile for the volume fraction and a
normal-mode expansion of motion equations
yields a system of Mathieu-Hill equations, Ng et
al.[14] presented a formulation for the dynamic
stability analysis of functionally graded shells
under harmonic axial loading by the Bolotin’s
method. Pan and Roy[15] derived exact
solutions for multilayered FGM cylinders under
static deformation. They obtained these
solutions by separation of variables and
expressed it in terms of the summation of the
Fourier series in the circumferential direction.
Xiang et al. [16] provided the elastic analysis
and exact solution for stresses in FGM hollow
cylinders in the state of plane strain with
isotropic multi-layers based on Lamé's solution.
Kang [17] derived the field equations for
homogenous thick shells of revolution.

A complete and consistent 3-D set of field
equations was developed by tensor analysis to
characterize the behavior of FGM thick shells of
revolution with arbitrary curvature and variable
thickness along the meridional direction by
Zamani Nejad et al. [18]. Using the 3D linear
elastic theory, Santos et al. [19] developed a
study of free vibrations of FGM shells made up
of isotropic properties by a semi-analytical
axisymmetric finite element model. Using plane
elasticity theory and Complementary Functions
method, Tutuncu and Temel [20] obtained
axisymmetric displacements and stresses in FG
hollow cylinders, disks, and spheres subjected to
uniform internal pressure. Zamani Nejad and
Rahimi [21] obtained stresses in isotropic
rotating FGM thick-walled cylindrical pressure
vessels as a function of radial direction by using

the theory of elasticity. Arani et al. [22]
investigated thermo-piezo-magnetic behavior of
an FG piezo-magnetic rotating disk under
mechanical and thermal loads. They expressed
power functions in radial direction of the disk by
using mathematical modeling. Assuming that
the Young’s modulus varies nonlinearly in the
radial direction, and that the Poisson’s ratio is
constant, on the basis of plane elasticity theory,
Ghannad and Zamani Nejad [23] derived the
governing equations for axisymmetric thick
cylindrical shells made of nonhomogeneous
FGMs subjected to internal and external
pressure. A high-order theory for FG axially
symmetric cylindrical shell based on the
expansion of the axially symmetric equations of
elasticity was developed by Zozulya [24] for
functionally graded materials into Legendre
polynomials series. Making use of FSDT,
Ghannad and Zamani Nejad obtained
displacements and stresses of internally
pressurized clamped-clamped thick isotropic
axisymmetric homogeneous [25] and FGMs
[26] cylinders. Ghannad and Gharooni [27]
presented an elastic analysis and a closed form
analytical solution for rotating FG thick walled
hollow cylindrical shells subjected to constant
internal and/or external pressure. Assuming that
the modulus of elasticity varies in the radial
direction as power function, Khoshgoftar et al.
[28] presented an elastic solution for thick-
walled cylindrical pressure vessels under
longitudinally non-uniform pressure made of
FG materials. Ghannad et al. obtained an
analytical solution for stresses and radial
displacement of homogeneous [29] and FGM
[30] clamped-clamped pressurized thick
cylindrical shells with variable thickness using
FSDT and matched asymptotic method. Asemi
et al. [31] studied a thick truncated hollow cone
with a finite length made of two dimensional
functionally graded materials subjected to
combined loads. The volume fraction
distribution of materials and geometry were
assumed to be axisymmetric but not uniform
along the axial direction. Using disk form
multilayers, Zamani Nejad et al. [32] derived a
semi-analytical solution for the purpose of
determining displacements and stresses in a
rotating cylindrical shell with variable thickness
under uniform pressure. Arani et al. [33] studied
static stresses analysis of carbon nano-tube
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reinforced composite cylinder made of poly-
vinylidene fluoride subjected to non-
axisymmetric thermomechanical loads. Batra
[34] obtained direct and material tailoring (or
inverse) problems for finite torsional
deformations of a solid circular cylinder made of
a Mooney–Rivlin material with the two elastic
moduli continuously varying in the axial
direction and deformed by applying equal and
opposite torques on its two end faces. Zamani
Nejad et al. [35] derived a semi-analytical
solution for determination of displacements and
stresses in a thick cylindrical shell with variable
thickness under non-uniform pressure. They
considered three different profiles (convex,
linear and concave) for the variable thickness
cylinder. Shariati et al. [36] presented a
numerical analysis of stresses and displacements
in FGM thick-walled cylindrical pressure vessel
under internal pressure. They assumed the
elastic modulus varying along the longitude of
the pressure vessel with an exponential function
continuously.

As mentioned above, numerous studies have
been carried out on cylinders made of
functionally graded material with radial-
directionally dependent properties. In the
present study, taking into account the effect of
shear stresses and strains, the FSDT of
derivation and elastic analysis of a non-uniform

pressurized thick-walled cylinder shell made of
axially functionally graded material with
clamped-clamped ends are presented. Using
multi-layered method (MLM), an FGM rotating
cylindrical shell with axially-varying properties
is divided into n homogenous disks. With regard
to the continuity between layers and applying
boundary conditions, the governing set of
differential equations with constant coefficients
is solved. The results obtained for stresses and
displacements are compared with the solutions
obtained by the finite element method (FEM).
Good agreement was found between the results.

2. Problem Formulation
In SDT, the straight lines perpendicular to the
central axis of the cylinder do not necessarily
remain unchanged after loading and
deformation, suggesting that the deformations
are axially axisymmetric and change along the
longitudinal cylinder. In other words, the
elements have rotation and the shear strain is not
zero. Consider a clamped-clamped thick-walled
isotropic FGM cylinder with an inner radius ir ,
thickness h , and length L subjected to internal
pressures  inP x and external pressure  outP x .

The cylinder is rotating around its axis with
constant angular velocity  (Fig. 1)

Fig 1. Cross section of the thick rotating cylinder with clamped-clamped ends
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The location of any typical point within the
shell element may be determined by R and z
is as follows:

 r R z (1)

where R represents the distance of the middle
surface from the axial direction and z is the
distance of any typical point from the middle
surface. With respect to Fig. 1, x and z must
be as follows:
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where h and L are the thickness and the
length of the cylinder, respectively. The general
axisymmetric displacement field,  ,x zU U , in

the FSDT could be expressed on the basis of
axial and radial displacements as follows:
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where  u x and  w x are the displacement

components of the middle surface, respectively.
Also,   x and   x are the functions of

displacement field. The strain-displacement
relations in the cylindrical coordinates system
are:

 1





 

 


 

    
    
   


             

x
x

z

z
z

x z
xz

U du d
z

x dx dx
U

w z
r R z
U

z
U U dw d

z
z x dx dx

(4)

Material properties including the modulus of
elasticity E and density  are supposed to be
axially dependent and are assumed to vary as
follows:
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where 1E and 1 are the modulus of elasticity

and density at 0x , and 2E and 2 are the

modulus of elasticity and density at x L . in
is the empirically determined positive
inhomogeneity constant . Since the analysis was
carried out for a thick wall cylindrical pressure
vessel of isotropic FGM, and given that the
variation of Poisson’s ratio  is small for
engineering materials, the Poisson’s ratio is
assumed to be constant. The stresses on the basis
of constitutive equations for non-homogenous
and isotropic materials are as follows:
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where  i and  i are the stresses and strains

in the axial x , circumferential  , and radial z

directions. The normal forces  , ,x zN N N ,

shear force  xQ , bending moments  , ,x zM M M

, and the torsional moment  xzM in terms of

stress resultants are:

 
2

2

, , , ,1 1   


          
    

h

x z x z

h

z z
N N N dz

R R

(7a)

 
2

2

, , , ,1 1   


          
    

h

x z x z

h

z z
M M M zdz

R R

(7b)
2

2

1


   
 

h

x xz

h

z
Q K dz

R
(7c)

2

2

1


   
 

h

xz xz

h

z
M K zdz

R
(7d)

where K is the shear correction factor that is
embedded in the shear stress term. In the static
state, for cylindrical shells 5 6K [37]. On the
basis of the principle of virtual work, the
variations of strain energy are equal to the
variations of the external work as follows:

 U W (8)

where U is the total strain energy of the
elastic body and W is the total external work
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due to internal and/or external pressure and
centrifugal force. The strain energy is:
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The variation of the strain energy is:
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The resulting Eq. (11) will be:

  
/ 2

0 / 22
 


   


   



    
L h

z z xz xz

h

x x

U
dzdxR z

  
/ 2

0 / 22
 


   


   



    
L h

z z xz xz

h

x x

U
dzdxR z (11)

The external work is:
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where

sff and


bff are the body force and the

surface force of the rotating pressurized
cylinder, respectively. The variation of the
external work is as follows:
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The resulting Eq. (13) will be:
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Substituting Eqs. (11) and (14) into Eq. (8),
and drawing upon the calculus of variation and
the virtual work principle, we will have:
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and the boundary conditions at the two ends of
the cylinder are:
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In order to solve Eq. (15), forces and moments
need to be expressed in terms of the components
of displacement field, using Eq. (7). Thus, the
set of differential equations could be derived as
follows
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Eq. (17) is a set of linear non-homogenous
equations with variable coefficients.
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the subsequent calculations. In order to make
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In Eq. (17), it is apparent that u does not exist,

but du dx does. Taking du dx as  ,
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Thus, Eq. (17) could be derived as follows:
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    
                

in out

in out

C

h h h
P R P R R hF

h h h h
P R P R Rh

(21d)

3. Semi-Analytical Solution
3.1 Multi-layered formulation

Eq. (20) is the set of non-homogenous linear
differential equations with variable coefficients.
An analytical solution of this set of differential
equations with variable coefficients seems to be

difficult, if not impossible, to obtain. Hence, in
the current study, MLM for the solution of Eq.
(20) is presented. In this method, a functionally
graded cylinder is divided into homogenous disk
layers with constant thickness t . (Fig. 2)
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Fig 2. Division of FG cylinder into homogenous disk form multilayer.

Fig 3. Geometry of an arbitrary disk layer.

Therefore, the governing equations convert to
a nonhomogeneous set of differential equations
with constant coefficients. [ ]kx is the length of
disks, and dn is the number of disks. The
modulus of elasticity and density of disks are
assumed to be constant. The length of middle

[ ]kx of thk disk (Fig. 3) is as follows

 [ ] [ ] 1
,

2 2 2


              
     

kk k x
t t L

x x x k
n

(22)

The elasticity module and the density of the
middle point of each disk are as follows:

   
  1

1 2 1
 

   
 

k
k

n

E
x

E E E
L

(23a)
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   
  2

1 2 1   
 

   
 

k
k

n
x

L
(23b)

Thus
      1 1

2 1

1




   

  
   

k
nk

dE

dx Ln

E E x

L
(24)

With regard to shear stress and based on
FSDT, a nonhomogeneous set of differential
equations with constant coefficient is obtained
for each homogenous disk.

             

    

2
[ ][ ] [ ] [ ] [ ] [ ] [ ]

31 22

[ ] [ ] [ ] [ ] [ ]/  


  


 

kk k k k k k

Tk k k k k

d d
y y B yB B F

dx dx

y du dx w

(25)

The coefficients matrices  4 4

k

iB , and force vector  4 1
k

F are as follows:

  
 

   

   

3

3
1

3 3

0 0 0 0

0 (1 ) 0 0
12

0 0
12

0 0
12 12



 

 

 
 
 
 
 
 
 
 
 
  

k

k

k k

k k

Rh
E

B h
E Rh E

h Rh
E E

(26a)

  

   

     
 

     

 
   

   
   

3

3 3 3

2 3

3 3 3

0 1 0 0
12

1 1 2
12 12 12

0
12

0 2
12 12 12



    

  

   

 
 

 
        

  
  

           
 
         

    

k

k
k k k

k

k k
k

k k
k

h
E

h dE Rh h
E E Rh E

dx
B

dE dE h
E Rh Rh

dx dx

h dE h dE Rh
E

dx dx

(26b)

  

       

   
 

 
 

        

 
 

        

3 3

3

3
2

1 0

1 0
12 6

1 1

1 1
12

  

  

     

     

 
 
     

  
           
 

          

k k k

k
k

k
k

k k k

k
k k k

E Rh E h E Rh

dE h dE h
E Rh

dx dx

B dE
E h Rh E E R h

dx

dE h
E Rh E R h E R

dx

(26c)
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  
 

 
 

0

2
2 2

2
3

0

12
2 2 6 2

2 2 2 2 6

 

 

 
 
 
               

    
                

k
k

in out

k

in out

C

h h h
P R P R R hF

h h h h
P R P R Rh

(26d)

3.2 Elastic Solution
Defining the differential operator ( )P D , Eq.
(26) is written as

     [ ][ ] [ ][ ] 2
31 2

2
2

2

[ ( )]

,

   



 


kk kkP D D D BB B

d d
D D

dx dx

(27)

Thus

   [ ] [ ][ ][ ( )] k kkP D y F (28)

The differential equations given above have
the total solution including the general solution
for the homogeneous case and the particular
solution, as follows:

         k k k

h p
y y y (29)

For the homogeneous case,

 
       

[ ][ ][ ( )] 0 



k

kk

h

k k m x

h

P D y

y V e
(30)

With respect to Eq. (27), we have:

        2
1 2 3 0  k k k

m B m B B (31)

The result of the determinant above is a six-
order polynomial, which is a function of m , the
solution of which is a 6-eigenvalue im . The
eigenvalues are 3 pairs of conjugated roots.
Substituting the calculated eigenvalues in the
following equation, the corresponding
eigenvectors are obtained.

           2
1 2 3 0   

 
k k k k

m B m B B V (32)

Therefore, the homogeneous solution is

      
 6

1


k

i
k kk m x

ih i
i

y C V e (33)

The particular solution is obtained as follows.

        
1

3


 
 

kk k

p
y B F (34)

Therefore, the total solution is

     
 

     
6 1

3
1





  
 

k
i

kk k km x
i i

i

y C V e B F (35)

In general, the problem for each disk consists
of 8 unknown values of iC , including 0C (Eq.

(18)), 1C to 6C (Eq. (35)), and 7C (Eq. (36))

     7 
kku du dx dx C (36)

The elastic solution is completed by the
application of the boundary and continuity
conditions.

3.3 Boundary and Continuity Conditions
Using SDT, it could be assumed that the cylinder
has boundary conditions other than free–free
ends. The clamped–clamped (fixed–fixed)
boundary is straightforward and implies that the
ends of the cylinder are restrained in all
coordinate directions and even with that the
plane along the edge of the cross-section is
assumed not to rotate as opposed to a line
tangent to the mid-surface of the shell as in thin
shell theories. Simple support end conditions
can be given a variety of interpretations [38].
Classically, a simple support boundary
condition is characterized with a hinge (ball and
socket in three dimensions) or roller if motion is
not restrained in all directions. In Table 1 the
details of boundary condition for the rotating
cylindrical shell are presented.
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Table 1. Boundary conditions for each end of cylindrical shell

Direction
Clamped

supported
Simply supported Free end

Boundary
condition

x
0

0



u 0

0


x

u

M

0

0




x

x

N

M

z
0

0



w 0

0


xz

w

M

0

0




x

xz

Q

M

In this work, two end edges of the FGM
cylindrical shells are assumed to be clamped
supported. Because of continuity and
homogeneity of the cylinder, at the boundary
between the two layers, forces, stresses and
displacements must be continuous. Given that
SDT applied is an approximation of one order
and also all equations related to the stresses
include the first derivatives of displacement, the
continuity conditions are as follows:

   
     

   
     1

1

1

2 2

, ,

, ,





   

         
      k k

k k
x x

k k
t tz zx x x x

U x z U x z

U x z U x z
(37)

   
     

   
     1

1

1

2 2

, ,

, , 





   

         
      k k

k k
x x

k k
t tz zx x x x

U x z U x z

U x z U x z
(38)

And
   

   
 

   

   
 1

1

1

2 2

, ,

, ,






   

   
   
      
   
      k k

k k
x x

k k
z z

t t
x x x x

dU x z dU x z

dx dx

dU x z dU x z

dx dx

(39)

   

   
 

   

   
 1

1

1

2 2

, ,

, ,






   

  
  

      
   
      k k

k k
x x

k k
z z

t t
x x x x

dU x z dU x z

dx dx

dU x z dU x z

dx dx

(40)

Given the continuity conditions, in terms of
z , 8 Equations are obtained. In general, if the
cylinder is divided into n disk layers,  8 1dn

equations are obtained. Using the 8 equations of
the boundary condition, 8 dn equations are
obtained. The solution of these equations yields
8 dn unknown constants.

4. Results and Discussion
In this section, numerical calculations are

carried out for specific cases. In order to show
the effectiveness and accuracy of the approach
suggested here, a comparison between responses
of the present theories and FEM can be made. In
FEM, an FG cylinder was modeled using
ANSYS®. The PLANE 223 element in
axisymmetric mode, which is an element with
eight nodes with up to four degrees of freedom
per each node, was used for discretization. In
order to model axially FG cylinder, an
innovative application for multi-layering of
thickness in the axial direction has been
performed. Homogenous layers which are of
identical thickness and step-variable properties
have been formed by this method. Using 6
elements in radial coordinate and 210 elements
in axial coordinate (1260 elements), finite
element analysis was carried out to obtain the
benchmark solution.

A cylindrical shell with 40ir mm, 20h
mm and 800L mm is considered in this paper.
The thick cylindrical has clamped-clamped
boundary conditions. For axial distribution of
pressure, the model of Eq. (41) is selected:

 1 2 1( ) (, ) 0
    
 

in ut

m

oP x P
x

L
xP P P (41)

Here 1P and 2P are the values of internal

pressure at the 0x and x L , respectively.
m is constant parameter that is used to control
the pressure profile. In order to compute the
numerical results, the following material
properties and boundary conditions are used for
each end of the cylinder. (Table 2)
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Table 2. Material properties and boundary conditions for each end of cylinder

E (GPa)  (kg/m3)  P (MPa)  (rad/s)

0x 200 7800 0.3 120 1000

x L 70 3000 0.3 40 1000

The results are presented in a non-dimensional
form. Displacement was normalized by dividing
to the internal radii. In order to normalize
stresses, we define the mean internal pressure
parameter as follows:

1 2

2



P
P P

(42)

The effect of the number of disk layers on the
radial displacement is shown in Fig. 4. It could
be observed that if the number of disk layers is
fewer than 80, it will have a significant effect on
the response. However, if the number of layers
is more than 80 disks, there will be no significant
effect on radial displacement. In the problem in
question 100 disks are used.

Fig 4. Effect of the number of disk layers on the normalized radial displacement  2, 1.5 m n .

In Figs. 5 to 8, displacement and stress
distributions are obtained, using MLM, are
compared with the solutions of FEM and are
presented in the form of graphs. Figs. 5-8 show

that the disk layer method based on FSDT has
an acceptable amount of accuracy when one
wants to obtain radial displacement, radial
stress, circumferential stress and shear stress.

Fig 5. Normalized radial displacement distribution in middle layer  1, 1.5 m n .
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Fig 6. Normalized circumferential stress distribution in middle layer  1, 1.5 m n .

Fig 7. Normalized radial stress distribution in middle layer  1, 1.5 m n .

Fig 8. Normalized shear stress distribution in middle layer  1, 1.5 m n .
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The effects of angular velocity ω on the
distribution of the stresses and radial
displacement are presented in Figs. 9 and 10.
Figs. 9 and 10 indicate that radial displacement
and equivalent stress rise with increase in
angular velocity. Also for the angular speed less
than 500 rad/s, the centrifugal force is less
effective than the internal pressure. It can be
noted that at very near the axial boundaries of
the cylinder, the mechanical response shows a
different characteristic from its general behavior
over the maximum part of the cylinder. In this
very small region, due to edge moments
subjected to clamped-clamped boundary

condition, the absolute value of radial
displacement and von-Mises stress have a higher
value from the points away from boundaries.
The results of FG rotating cylinder are presented
to study the impact of the non-uniformity
pressure function on the results. For this
purpose, the distribution of pressure for different
values of m could be seen in Fig. 11. Fig. 11
shows that a linear pressure distribution can be
obtained by setting 1m . The pressure profile
is concave if 1m and it is convex if 1m .
Figs. 11 and 12 indicate that radial displacement
and equivalent stress rise with increase in non-
uniformity pressure constant m .

Fig 9. Normalized radial displacement subjected to various angular velocity  1, 1 m n .

Fig 10. Normalized von Mises stress subjected to various angular velocity  1, 1 m n .
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Fig 11. Axial distribution of non-dimensional inner pressure.

Fig 12. Normalized radial displacement along the length subjected to different internal
pressure profiles  1n .

Fig 13. Normalized von Mises stress along the length subjected to different internal
pressure profiles  1n .
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The radial distribution of modulus of
elasticity is showed in Fig. 14. It is obvious that
in the same position  0 1 x L , the

dimensionless modulus of elasticity decreases
as n decreases. Also, due to the similarity
between density and elasticity modulus, the
density distribution curve is similar to Fig. 14.

Fig 14. Non-dimensional modulus of elasticity along the length for different non-homogeneity indexes.

The influences of gradient index on the
distribution of displacement and equivalent
stress are examined in Figs. 15 and 16. The
results of Figs. 15 and 16 can be summarized to
conclude that in the FG cylinder with axially-
varying properties according to Power-law
form, higher gradient index is better than lower
gradient index. It could be observed that the
radial displacement decreases with the increase

in the grading index n from zero up to its
maximum value n . Also, it is observed
that the choice of power-law index is entirely
dependent on the pressure function. For
example, in the case of 1m (linear pressure
function) and 1n (linear gradient properties),
radial displacement is constant for distant points
of the boundaries.

Fig 15. Normalized radial displacement subjected to different non-homogeneity indexes  1m .
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Fig 16. Normalized von Mises stress subjected to different non-homogeneity indexes  1m .

5. Conclusions
In the present study, based on FSDT and
elasticity theory, the governing equations of
thick-walled cylindrical shell are derived. The
mechanical properties except Poisson ratio, are
graded along the axial direction according to a
power law form of axial direction. A thick FG
cylindrical shell is divided into homogenous
disks with constant height. With regard to the
continuity between layers and applying
boundary conditions, the governing set of
differential equations with constant coefficients
is solved. The results obtained for stresses and
displacements are compared with the solutions
carried out through the FEM. Good agreement
was found between the results. General
observations of this study could be summarized
as follows:

1. SDT is a popular model in structural
analysis. In SDT, any changes in the axial
direction of a cylindrical shell cause variable
coefficients in the governing differential
equations. The system of differential equations
with variable coefficients can be changed to a set
of differential equations with constant
coefficients by MLM method.

2. The results show that MLM, based on
FSDT, has an acceptable amount of accuracy
when one wants to obtain radial displacement,
radial stress, circumferential stress and shear
stress.

3. By using axially FG cylinder, radial
displacement can be uniform in the axial
direction under non-uniform pressure.

4. For the angular speed less than 500
rad/s, the centrifugal force effect is negligible.
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