
M. Fahami et al, Journal of Advanced Materials and Processing, Vol. 5, No. 2, 2017, 52-60        52 

Estimation of the Mean Grain Size of Mechanically Induced 

Hydroxyapatite Based Bioceramics via Artificial Neural Network 
 

Mohammad Fahami 1, Majid Abdellahi2, 

 
1 Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, 

Iran  

2 Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, 

Islamic Azad University, Najafabad, Iran 
 

 

ARTICLE INFO  ABSTRACT 

Article history: 
 

Received 17 November 2016 

Accepted 4 February 2017 
Available online 25 June 2017  

 

 

 

This study focuses on the estimation of the mean grain size of 

mechanically induced Hydroxyapatite (HA) through the artificial 

neural network (ANN) model. The mean grain size of HA and HA 

based nanocomposites at different milling parameters was obtained 

from previous studies. The data were trained and tested by the neural 

network modeling. Accordingly, all data (55 sets) were based on 

mechanical alloying and were randomly divided into 40 training sets 

and 15 testing sets. The data used in the multilayer feed forward 

neural networks models and input variables of models were arranged 

in a format of 13 input parameters. The results indicated a very good 

agreement between the experimental data and the predicted ones. 

The R2 value of the trained and tested data suggested by the model 

confirmed this situation. Given the broad range of the used 

parameters, it was found that our analysis and model were fully 

functional to accurately estimate the optimal conditions for 

experiments. This shows the potential application of these 

calculations and analyses in a wide range of numerical studies. 
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1-Introduction 

Boiler components, such as main steam piping 

and the header parts of boilers, are usually 

exposed to high thermal stresses. A387-

Gr.91steel is one of the suitable candidates for 

the mentioned application that explores good 

creep and fatigue resistance [1]. In other words, 

due to high corrosion, oxidation and creep 

resistance of austenitic stainless steels, super-

heater and re-heater parts are made of these 

alloys [1, 2].  

The welding of these two dissimilar steels by 

different welding routes has been the subject of 

wide research. Usually, the shielded metal arc 

welding (SMAW) and gas tungsten arc welding 

(GTAW) processes are applied to weld these 
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alloys. The major problem encountered with the 

using of austenitic stainless steels as filler 

metals is possible carbon migration from ferritic 

steel to the welding metal and brittleness of the 

weld especially in the service temperatures more 

than 315°C. Welding of parts like tubes in the 

boiler that are in contact with the sulfurous 

environment by nickel-base fillers such as 

ERNiCrMo-3 is one solution to overcome the 

problem [3, 4, 5]. 

GTAW process is one of the fusion welding 

routes used in dissimilar welding of ferritic 

steels to austenitic stainless steels. Because of 

solidification structure, mechanical properties 

and corrosion resistance of the welding metal 

decline and it is possible to be modified by  
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Mechanical alloying (MA) is a solid state 

technique used for making of nanocrystalline 

alloys, bioceramics, and intermetallic 

compounds. MA allows materials scientists to 

dominate material restriction and prepare alloys 

that are difficult or impossible to be synthesized 

by conventional melting and casting techniques 

[1]. This technique involves repeated 

deformation, welding and fracturing of powder 

particles [2]. A growing demand for the 

adjustment of the properties of novel materials 

produced by MA to certain applications and also 

the development of the MA regimes and 

apparatus designs for commercial scaling 

necessitate the development of mathematical 

models of MA [3]. The first modeling of 

mechanical alloying was carried out by Volin 

and Benjamin [3]. 

Artificial neural network (ANN) is one of the 

most powerful modeling techniques in 

conjunction with the statistical approach, which 

seems quite suitable for the estimation of 

mechanical alloying outputs. The neural 

network theory deals with learning from a 

previous obtained data, which is called the 

training or learning set, and then to check the 

system success using test data [4]. Over recent 

years the interest in the ANN modeling in 

different fields of materials science has 

increased [5]. The advantages of ANN modeling 

are based on reduction of time and cost in all the 

required experimental activities. This technique 

essentially involves the interconnection of 

simple computational elements known as 

neurons or nodes [6].   

Hydroxyapatite (HA) as an inorganic 

component of bone and teeth is commonly used 

to coat metallic implants and to repair bone 

defects due to its excellent biocompatibility, 

osteoconductivity, and bioactivity. This class of 

ceramics are potential candidates to be used in 

the manufacturing of bone-like scaffolds and 

may also be designed in surgery for the 

reconstruction of bone defects [7, 8] . With the 

development of artificial intelligence theory, the 

estimation in non-linear problems has become 

an effective technique. Altinkok and Koker [9] 

reported a new design of a neural network to 

estimate the percentage of alumina in Al2O3/SiC 

and the pore volume fraction in a ceramic cake 

for any given amount of reinforcement (SiC) in 

the mixture. Moreover, in another research they 

designed a neural network to predict the density 

properties and tensile strengths in particle 

reinforced aluminum matrix composites based 

on given SiC particle size [10]. However, 

information regarding the prediction of the mean 

grain size of mechanically induced HA and HA 

based nanocomposites is limited. This research 

aims at designing an ANN modeling of 

mechanically induced HA and HA based 

nanocomposites to predict the mean grain size of 

the product under different conditions. In this 

relation, the milling and reaction parameters, 

including different percentages of 

reinforcement, ball to powder ratio (BPR), 

crystallinity degree, lattice strain, different 

percentages of matrix, different atmospheres, 

milling time, different revolutions per minute 

(RPM), various heat treatment temperatures, 

different types of ball mills as well as variety of 

balls and jars were employed as the input 

parameters in this model. 

 

2- Experimental  
The collected data from the previous works [11–

22] are listed in Table 1. The input parameters 

consisted of different percentages of 

reinforcement, ball to powder ratio (BPR), 

crystallinity degree, lattice strain, different 

percentages of matrix, different atmospheres, 

milling time, revolutions per minute (RPM), 

different annealing temperatures, the type of 

balls and jars, with the ranges given in Table 1. 

Some symbols and reaction description of the 

materials presented in Table 1 are presented in 

Table 2. 

 

3- Artificial neural networks 
ANN is best explained as a set of simple highly 

interconnected processing elements that are 

capable of learning the information presented to 

them. The neural network theory is based on the 

studies of biological activities of the brain, 

which were developed to model the human brain 

[23]. McCulloch and Pitts [24] reported artificial 

neurons for the first time and developed a 

neuron model. Rosenblatt [25] designed a 

machine called perceptron that performed much 

in the same way as the human mind. Rumelhart 

et al. [26] developed a learning algorithm for 

perceptron networks with constituted hidden 

units.  
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Table1. The gathered data as input and target for training and testing sets from the previous works (using Planetary Ball Mill Type). 

Ref 
Crystallinity 

(Xc) 
Elasticity 

Mean 

grain 

size(nm) 

Milling 

time 

T 

(°C) 

Milling 

atmosphere 
BPR RPM 

Type of 

ball 

Type of 

vial 

Amount of 

reinforcemen

t% 

Reinforcement Matrix 

[11]  80 0.31 37 40 25 Air 20:1 600 ZrO2 Polyamide 20 TiO2 HA-R1 

[11]  76 0.3 37 40 25 Ar 20:1 600 ZrO2 Polyamide 20 TiO2 HA-R1 

[11]  96 0.35 32 80 25 Air 20:1 600 ZrO2 Polyamide 20 TiO2 HA-R1 

[11]  98 0.37 32 80 25 Ar 20:1 600 ZrO2 Polyamide 20 TiO2 HA-R1 

[11]  82 0.33 34 40 25 Air 20:1 600 ZrO2 Polyamide 20 TiO2 HA-R2 

[11]  70 0.28 40 40 25 Ar 20:1 600 ZrO2 Polyamide 20 TiO2 HA-R2 

[11]  92 0.42 27 80 25 Air 20:1 600 ZrO2 Polyamide 20 TiO2 HA-R2 

[11]  15 0.3 33 80 25 Ar 20:1 600 ZrO2 Polyamide 20 TiO2 HA-R2 

[12]  17 0.621 20.13 10 25 Ar 20:1 600 ZrO2 Polyamide 20 Ti HA-R3 

[12]  15 0.601 19.06 15 25 Ar 20:1 600 ZrO2 Polyamide 20 Ti HA-R3 

[12]  13 0.530 13.13 20 25 Ar 20:1 600 ZrO2 Polyamide 20 Ti HA-R3 

[12]  80 0.376 28.9 10 650 Ar 20:1 600 ZrO2 Polyamide 20 Ti HA-R3 

[12]  65 0.407 26.6 15 650 Ar 20:1 600 ZrO2 Polyamide 20 Ti HA-R3 

[12]  69 0.365 29.86 20 650 Ar 20:1 600 ZrO2 Polyamide 20 Ti HA-R3 

[13]  48 0.527 24.4 10 25 Air 20:1 600 ZrO2 Polyamide 20 TiO2 + Mg HA-R3 

[13]  80 0.377 34.4 10 700 Air 20:1 600 ZrO2 Polyamide 20 TiO2 + Mg HA-R3 

[13]  88 0.339 43.3 10 900 Air 20:1 600 ZrO2 Polyamide 20 TiO2 + Mg TCP 

[13]  94 0.268 51.9 10 
110

0 
Air 20:1 600 ZrO2 Polyamide 20 TiO2 + Mg TCP 

[14]  22 0.83 20 10 25 Air 20:1 600 Steel Steel 20 F A-TCP-R1 

[14]  65 0.58 69 10 25 Air 20:1 600 Steel Steel 20 F A-TCP-R2 

[14]  57 0.64 58 10 25 Air 20:1 600 Steel Steel 20 F A-TCP-R3 

[14]  69 0.65 55 10 25 Air 20:1 600 Steel Steel 20 F A-TCP-R4 

[15]  88 0.268 60 5 25 Air 25:1 250 Steel Steel 0 MG FA-0M 

[15]  73 0.64 42 2 25 Air 25:1 250 Steel Steel 5 MG FA-5M 

[15]  55 0.377 34 4 25 Air 25:1 250 Steel Steel 10 MG FA-10M 

[15]  70 0.339 46 8 25 Air 25:1 250 Steel Steel 15 MG FA-15M 

[15]  58 0.527 42 12 25 Air 25:1 250 Steel Steel 20 MG FA-20M 

[16]  33 0.31 27 2 600 Air 20:1 1200 Steel Steel 0 F HA 

[16]  42 0.3 35 4 700 Air 20:1 1200 Steel Steel 5 F HA 



M. Fahami et al, Journal of Advanced Materials and Processing, Vol. 5, No. 2, 2017, 52-60        55 

 

 

 

Ref 
Crystallinity 

(Xc) 
Elasticity 

Mean 

grain 

size(nm) 

Milling 

time 

T 

(°C) 

Milling 

atmosphere 
BPR RPM 

Type of 

ball 

Type of 

vial 

Amount of 

reinforcemen

t% 

Reinforcement Matrix 

[16]  50 0.35 40 6 800 Air 20:1 1200 Steel Steel 10 F HA 

[16]  56 0.37 45 8 900 Air 20:1 1200 Steel Steel 15 F HA 

[17]  61 0.621 50 2 
120

0 
N2 10:1 400 Steel Steel 77 

Alumina 

+TiO2 
HA 

[17]  69 0.601 45 4 
125

0 
N2 10:1 400 Steel Steel 77 

Alumina+ 

TiO2 
HA 

[17]  48 0.530 40 6 
130

0 
N2 10:1 400 Steel Steel 77 

Alumina+ 

TiO2 
HA 

[18]  39 0.456 44 2 25 Ar 35:1 350 Zro2 Zro2 0 F FHA1 

[18]  35 0.425 36 4 25 Ar 35:1 350 Zro2 Zro2 25 F FHA2 

[18]  27 0.415 35 6 25 Ar 35:1 350 Zro2 Zro2 50 F FHA3 

[18]  31 0.390 30 8 25 Ar 35:1 350 Zro2 Zro2 75 F FHA4 

[18]  28 0.406 32 10 25 Ar 35:1 350 Zro2 Zro2 100 F FHA5 

[19]  22 0.340 29 12 37 Air 20:1 530 Steel Steel 0 zircon HA 

[19]  65 0.335 28.5 14 37 Air 20:1 530 Steel Steel 5 zircon HA 

[19]  57 0.327 28 18 37 Air 20:1 530 Steel Steel 10 zircon HA 

[19]  69 0.315 27.5 20 37 Air 20:1 530 Steel Steel 15 zircon HA 

[19]  62 0.295 26.5 30 37 Air 20:1 530 Steel Steel 20 zircon HA 

[19]  60 0.281 26 40 37 Air 20:1 530 Steel Steel 25 zircon HA 

[20]  80 0.537 40 .33 
113

0 
Air 10:1 600 Alumina Steel 0% Hardystonite NHA 

[20]  65 0.398 34 24 980 Air 10:1 600 Alumina Steel 5 Hardystonite NHA 

[20]  69 0.520 39 2 900 Air 10:1 600 Alumina Steel 10 Hardystonite NHA 

[20]  48 0.506 38.5 4 850 Air 10:1 600 Alumina Steel 15 Hardystonite NHA 

[21]  55 0.293 33 4 750 Air 10:1 600 Alumina Steel 10 diopside NHA-Di 

[21]  50 0.280 32 8 850 Air 10:1 600 Alumina Steel 20 diopside NHA-Di 

[21]  44 0.263 30 10 950 Air 10:1 600 Alumina Steel 30 diopside NHA-Di 

[22]  23 0.393 40 2 25 Ar 15:1 400 alumina porcelain 0 zircon FNHA 

[22]  20 0.382 36 4 25 Ar 15:1 400 alumina porcelain 5 zircon FNHA 

[22]  18 0.393 33 6 25 Ar 15:1 400 alumina porcelain 10 zircon FNHA 

[22]  17 0.359 32 8 25 Ar 15:1 400 alumina porcelain 15 zircon FNHA 
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Table 2. Symbols and description of materials 

presented in Table 1. 

Symbol Description 

HA-R1 R1: CaHPO4 + Ca(OH)2 

HA-R2 R2: CaCO3 + CaHPO4 

HA-R3 R3: CaHPO4 + CaO 

TCP Tricalcium phosphate 

A-TCP Amorphous TCP 

A-TCP-

R1 

R1: CaO + P2O5 

A-TCP-

R2 

R2: CaO + CaHPO4 

A-TCP-

R3 

R3: Ca(OH)2 + P2O5 

FA Fluorapatite 

FHA Fluor-Hydroxyapatite 

NHA Natural-Hydroxyapatite 

NHA-Di Natural Hydroxyapatite 

Diopside 

FNHA Fluor-Natural-Hydroxyapatite 

 

Their learning algorithm was called back-

propagation (BP) and is now the most widely 

used learning algorithm.  

The BP pattern is employed in the present study. 

It is a highly effective learning means that can 

be applied to a wide range of problems. The BP 

associated paradigms require supervised 

training. This means that they must be educated 

via a set of training data where known solutions 

are supplied. BP type neural networks process 

information in interlinking processing elements 

(often called neurons, units or nodes; in our 

study we will use nodes). These nodes are 

organized into groups labelled as layers. There 

are three distinct types of layers in a BP neural 

network: the input layer, the hidden layer, and 

the output layer. A network encompasses one 

input layer, one or more hidden layers, and one 

output layer. There are some relations between 

the nodes of adjacent layers to relay the output 

signals from one layer to the next. Fully 

connected networks occur when all nodes in 

each layer receive connections from all nodes in 

each previous layer. The data enter a network 

through the nodes of the input layer. 

 

4- Neural network model structure and 

parameters 
ANN model used in this research includes 

thirteen neurons in the input layer and one 

neuron in the output layer as shown in Fig. 1. 

This architecture is a 13–9–1 multilayer 

perceptron (MLP), meaning that it is a network 

containing three layers including the input layer 

with thirteen nodes, the hidden layer with nine 

nodes, and the output layer with one nodes. The 

values for the input layers were the grain size of 

HA and HA based nanocomposites obtained at 

various parameters as mentioned above. The 

values for the output layer were the mean grain 

size data in one set. One hidden layer with 9 

neurons was used in the architecture of 

multilayer neural network because of its 

minimum absolute percentage error values for 

training and testing sets in Fig. 2. After testing 

the effect of the number of neurons in the hidden 

layer on the network performance, the optimal 

configuration of the ANN model using BP 

algorithm was found to be 13–9–1. 

The neurons of the neighboring layers were 

entirely interconnected by weights. Finally, the 

output layer of neurons produces the network 

anticipation as a result. In this study, the BP 

training algorithm has been utilized in the feed-

forward single hidden layer network. BP 

algorithm, as one of the most well-known 

training algorithms for the multilayer 

perceptron, is a gradient descent technique to 

diminish the error for a particular training 

pattern in which it adjusts the weights by a small 

amount at a time [27]. The non-linear Tangent 

Hyperbolic (Tanh) activation function was 

employed in the hidden layer and the neuron 

outputs at the output layer. The trained model 

was only tested with the input values and the 

predicted results were close to the experimental 

ones. 
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Fig. 1. The MLP neural network architecture used for training and modeling of the mean grain size. 

 
Fig. 2. The MLP neural network normal errors in different networks with different neurons in the hidden layer. 
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Fig. 3. The correlation of the measured and predicted mean grain size values of the synthesized nanopowders in 

(a) training and (b) testing phase for neural network model. 

 

The values of parameters used in neural network 

model are given in Table 3. To make a decision 

on the completion of the training processes, the 

termination state is declared as the ANN model, 

indicating that the training ended when 

minimum error norm of network was gained. 

              
Table 3. Neural network experimental settings. 

 

5- Discussion and predicted results 
One of the most challenging duties in ANN 

researches is to find this optimal network 

architecture, which is based on the designation 

of numbers of optimal layers and neurons in the 

hidden layers by a trial and error approach. The 

tasks of initial weights and other related 

parameters may also affect the performance of 

ANN to a great extent. However, there is no 

certain procedure to have an optimal network 

architecture and parameter settings where the  

 

 

trial and error method still remains valid [28–

31]. 

In this study, Matlab Neural Network toolbox is 

used for ANN applications. To address the 

optimization difficulty, a program has been 

developed in Matlab which automatically 

handles the trial and error process. The program 

tries various numbers of layers and neurons in 

the hidden layer when the highest mean squared 

error (MSE) of the testing set, as the training of 

the testing set, is achieved [28–31]. In this study, 

the error appeared during the training and testing 

in ANN models can be shown as absolute 

fraction of variance (R2) calculated by Equation 

(1) [32]:  

𝑅2 = 1 −  (
∑ (𝑡𝑖−𝑂𝑖)2

𝑖

∑ (𝑂𝑖)2
𝑖

)          (1) 

where t is the target value, o is the output value, 

and i is the pattern. All of the results obtained 

from experimental studies and predicted by 

using the training and testing results of neural 

network models are given in Fig 3. From Fig. 3, 

it is inferred that the values obtained from the 

training and testing in neural network are 

relatively close to the collected experimental 

results by an accuracy of more than 96% for the 

training set and more than 83% for the testing 

set. 

As shown in Fig.3a, the predicted results from 

models are compared to the collected 

experimental results for the training sets. The 

results proved that the proposed model has 

Setting network Characteristic 

MLP feedforward 

BP 
Type of network 

Levenberg 

Marquardt (LM) 
Learning algorithm 

Tangent Hyperbolic 

(Tanh) 

Trigger functions 

hidden layer 

1 Number of layer 

9 Number of neuron 
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moderately well learned the non-linear 

relationship between the input and the output 

variables with a good correlation and 

comparatively low error values. The result of the 

testing phase in Fig.3b shows that the neural 

network model is capable of generalizing 

between input and output variables with 

reasonably good predictions and accuracy more 

than 83%. Comparing the neural network model 

prediction with the collected experimental 

results for the testing and training stages 

demonstrates a generalization capacity of the 

proposed model and fairly low error values. All 

of these findings exhibit a successful 

performance of the model for predicting the 

mean grain size values of the synthesized 

nanopowders in training and testing stages.  

 

6- Conclusion 
In this research, the data collected from previous 

studies (HA and HA based nanocomposites) 

were selected. The Artificial Neural Network 

(ANN) model has been used to predict the mean 

grain size of Hydroxyapatite from input 

parameters. The results obtained from the model 

demonstrated that only multilayer feed-forward 

neural networks could have a suitable agreement 

with the other collected results. By using the 

data, a prediction model was improved by means 

of artificial neural network to determine the 

mean grain size of the ball-milling process. In 

this model, 55 data sets were used so that 40 data 

sets (73%) were randomly chosen for the 

training set, and 15 data sets (27%) were used as 

the testing set. The prediction model 

demonstrated a very good statistical 

performance with a 0.84 correlation coefficient 

between the actual/ modeling data and the 

network predicted output. For the ranges of the 

input variables examined, the BP neural network 

model successfully predicted the mean grain 

size. This confirmed that the composed 

prediction model has a high reliability rate. 

Hence the neural network based prediction 

model developed in this study can be applied 

with a high degree of accuracy and reliability for 

not only determining the mean grain size of HA 

based bioceramics, but also resulting in large 

economic benefits for industries. 
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