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In the present investigation, an artificial neural network (ANN) 

model is developed to predict the isothermal hot forging behavior of 

AlCuMgPb aluminum alloy. The inputs of the ANN are deformation 

temperature, frictional factor, ram velocity and displacement 

whereas the forging force, barreling parameter and final shape are 

considered as the output variable. The developed feed-forward back-

propagation ANN model is trained with Leven berg–Marquardt 

learning algorithm. Since the finite element (FE) simulation of the 

process is a time-consuming procedure, the ANN has been designed 

and the outputs of the FE simulation of the hot forging are used for 

training the network and then, the network is employed for 

prediction of the behavior of the output parameters during the 

isothermal forging process. Experimental data is compared with the 

FE predictions to verify the model accuracy. The performance of the 

ANN model is evaluated using a wide variety of standard statistical 

indices. Results show that the ANN model can efficiently and 

accurately predict isothermal hot forging behavior of AlCuMgPb 

alloy. Finally the extrapolation ability and noise sensitivity of the 

ANN model are also investigated. It is found that the extrapolation 

ability is very high in the proximity of the training domain, and the 

noise tolerance ability very robust. 
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1-Introduction 

Aluminum alloys are widely used in many industries such as aerospace and automotive for fabrication 

of light weight products due to their attractive combination of properties like low weight to strength 

ratios and good corrosion resistance [1, 2]. The metals and alloys are frequently formed by hot forming 

processes including hot rolling, forging and extrusion. These processes can be used for processing large 

size and complex shape of products due to high formability and small deformation resistance; 

additionally, they can improve the mechanical properties of metals [3, 4].  

The design and control of forging process depend on the characteristics of the material, the conditions 

at the tool/work piece interface, the ram velocity, die shape design and the equipment used [5-7]. 

However, prediction of the optimum condition for hot forging process is very difficult because all 

processing parameters change with temperature and deformation history. Various methods have been 

proposed to analyze the hot forming process optimization, the temperature field, defects of the formed 

product and the microstructure evolution of metals and alloys. Hot forming processes simulation is a 
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powerful tool to predict and control material behavior and process optimization under various 

deformation conditions. These tools are developed based on numerical simulation techniques such as 

finite element method (FEM). The FEM can be one of the best methods because it considers all factors, 

such as thermal properties changes or differing rates of generation of internal heat with time and 

position [8]. Therefore, many researches have been carried out to predict the material behavior during 

hot working processes using constitutive equations which these equations are often used to describe 

the plastic flow behaviors of the materials in a form that is suitable to use in computer code to model 

the materials response under the indicated loading conditions. So, these equations and simulations can 

be used for determination of load and power requirements for forming and also microstructure 

evolution of the metal forming process simulations [9-11]. A number of research groups have made 

efforts to integrate the developed behavior models into FEM to predict the material evolution during 

hot metal forming. The effects of thermo-mechanical parameters such as temperature, strain, and 

strain-rate and deformation history on the strain/stress distribution and microstructural evolution of 

metals and alloys during hot forming processes have been investigated by integrating the thermo-

mechanical coupled finite element (FE) model [12-17]. Also, some researchers have investigated the 

effects of thermo-mechanical parameters on the defects of hot forged product using FEM [3, 18-19]. 

There have been many studies dealing with the prediction of parameters such as distributions of strain, 

temperature and forming load requirements to know the optimum process parameters for the exact 

quality products. Prabhu [20] simulated a non-isothermal precision forging process of a Ti-6Al-4V 

first-stage impeller for the gas turbine engine using the FE software and load requirements, damage, 

velocity field, stress, strain, and temperature distributions investigated in detail. Hot forging process 

design and parameters determination of magnesium alloy AZ31B spur bevel gear have been 

investigated by Liu et al. [21] and it has been shown that the finite element results are consistent with 

the experimental ones and the optimum perform die shape was obtained by FE simulation.  

Rao et al. [22] showed that the experimental load–stroke curves correlated well with the simulated ones 

in hot forging of Magnesium alloy. Chan et al. [23] developed a material constitutive model based on 

micro-compression test and proposed a modified micro-double cup extrusion test and the 

corresponding FEM simulation. The effects of friction coefficient on the geometrical changes of 

cylindrical samples during hot forging processes were studied by Li et al. [24]. 

In recent years, artificial neural network (ANN) as a more adaptable and rapid method has been 

developed and used in many engineering applications and is especially suitable for behaving complex 

and non-linear systems. The ANN has been used in describing and predicting the thermo-viscoplastic 

deformation behavior of the metal forming processes and has a shorter running time and easier in 

comparison with the FEM. Also, ANN has been integrated into an FEM to generate learning data of 

ANN. Microstructural evolution of Ti-6Al-4V alloy under isothermal and non-isothermal hot forging 

conditions was predicted using ANN and FEM simulation by Kim et al. [25]. Chan et al. [26] developed 

an integrated methodology based on FEM simulation and ANN to approximate the functions of design 

parameters and evaluate the performance of designs as the FEM simulation is first used to create 

training cases for the ANN and the trained ANN is used to predict the performance of the design. 

Prediction of temperature distribution and required energy in hot non-isothermal forging process of 

low carbon steel has been done using coupling a thermo-mechanical analysis based on a FEM and 

ANN by Serajzadeh [27]. Also, in another research, a thermo-mechanical model was developed to 

predict metal behavior during hot forging process; at first an ANN model was trained to calculate flow 

stress of deforming metal as a function of temperature, strain and strain rate and then temperature and 

velocity fields were predicted by coupling the ANN model and a thermo-viscoplastic FE model [28].  

In the present research, an ANN model with standard back-propagation learning algorithm is developed 

and used to predict the thermo-mechanical behavior and forging force, barreling and final shape of 

AlCuMgPb aluminum alloy samples under different isothermal hot forging conditions including 

forging temperature, friction, ram velocity and stork. For this purpose a three-dimensional FE model 

verified with experimental results has been developed to provide a data basis for training and validation 

of the ANN by DEFORM-3D software. Also, the performances of the ANN model are investigated 



H. R. Rezaei Ashtiani et al, Journal of Advanced Materials and Processing, Vol. 6, No. 1, 2018, 29-45 31 

with a variety of statistical indices, the extrapolation ability and noise sensitivity of the ANN model in 

comparison with the FEM results.  

 

2-Experimental procedures and finite element modeling 
2-1-Experimental procedures 

The chemical composition of the AlCuMgPb aluminum alloy used in this investigation is shown in 

Table 1. Isothermal hot compression tests were carried out to obtain the AlCuMgPb alloy behavior 

under different thermo-mechanical conditions during hot deformation described at different levels of 

strains, strain rates and temperatures in an earlier publication [29]. Specimens (with initial height (h0) 

of 12 mm and initial radius (R0) of 4 mm) for isothermal hot forging were machined from the as-hot 

extruded aluminum alloy product. To investigate the effects of varying forging temperature, friction, 

ram velocity and ram displacement (stork) on forging force, barreling and final forged shape, 

isothermal hot forging were conducted in the temperature range of 350 -500◦C and in the ram velocities 

range of 25-500 mm/min with ram displacement. The load-stroke used during each deformation was 

recorded from the dial indicator.  

 shows a 

cylindrical sample before and after hot forging. 

As it is clear, hf is the height of the hot forged 

sample 

and Rb and Rn are the maximum and top radiuses 

of sample after hot forging, respectively. 

 

 

 

 
Table 1. Chemical composition (wt. %) of AlCuMgPb alloy. 

Cu Mg Pb Si Fe Mn Cr Zn Ti 

3.85 0.92 1.12 0.37 0.58 0.25 0.01 0.37 0.01 

 

 

 

 

 

 
(a) (b) 

 

 

2-2-Finite element modeling 

A 3D thermo-mechanical model has been developed to simulate the isothermal hot forging process of 

AlCuMgPb aluminum alloy using the commercial finite element software package, DEFORM-3D. In 

this model, the interaction of the mechanical and thermal phenomena is  

 

considered and the AlCuMgPb aluminum alloy is represented deformable with 55332 coupled thermo-

mechanical tetrahedral elements whereas the top and bottom dies is assumed as rigid.  

The hot forging test is assumed to behave as a thermo-viscoplastic material with temperature 

independent elastic modulus of 70 GPa and Poisson’s ratio of 0.33. The plastic deformation behavior 

of the work piece is proper to consider uniform or homogeneous deformation conditions. The plastic 

Fig.  1. Cylindrical samples (a) before and (b) after isothermal hot forging 

Fig.  1. Cylindrical samples (a) before and (b) after isothermal hot forging 
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behavior of AlCuMgPb modeled as the hyperbolic sine equation, developed from hot compression 

tests [29] as follows: 

 

ε̇ = A[sinh⁡(ασ)]nexp⁡(−
Q

RT
) 

(1) 

 

Where ε̇ is strain rate (s−1),⁡T is the absolute temperature (K),⁡σ  is  the  flow  stress  (MPa), Q  is  the 

deformation activation energy (J mol−1), R is the universal gas constant (8.3144  J mol−1K−1); and  

A, n and α are material constants. The following flow stress parameters have been utilized in the 

constitutive equation of AlCuMgPb, A = 1.197 × 106, Q = 104.2⁡kJ/mol,n = 4.55andα =
0.026⁡Mpa−1. The thermo-physical properties of AlCuMgPb including thermal conductivity and heat 

capacity are 130N⁡sec−1⁡K−1(130⁡W⁡m−1⁡K−1) and 2.28N⁡mm−2C−1 (860J⁡kg−1K−1), respectively. 

Two contact pairs are defined between the work pieces and the top die as well as bottom die, 

respectively. Interfacial friction based on constant friction law is useful at high pressures and expressed 

as [30]: 

 

τ = mK (2) 

 

Where τ is the frictional shear stress, m is the frictional shear factor and K is the shear yield strength. 

The frictional shear factor varies in wide ranges due to hot forging condition and different lubricants. 

It is clear that the interfacial friction between the work piece and dies will affect the non-uniform 

deformation of the work pieces. The interfacial friction becomes apparent with the increase of 

deformation. Thus, the deformation is more and more heterogeneous, leading to the barrel shape of the 

work pieces, as shown in Fig. 1. The barreling parameter (B) has been developed for evaluating the 

effect of frictional factor, which involves only the geometrical measurement of the work piece shape 

changes, which is expressed as follows [31]: 

B = 4
∆R

R

H

∆H
 

(3) 

Where  R = R0√
H0

H
 , ∆R = Rb − Rn and⁡∆H = H0 − H. 

 

In this study, the simulations of isothermal hot forging process has been conducted at 350, 400, 450 

and 500 ℃ and ram velocities of 25, 125, 250 and 500 mm/min and also frictional shear factors of 0.1, 

0.3, 0.5 and 0.7.  

 

2-3-Finite element model verification 

The finite element model developed in this study has been validated by comparing the model 

predictions including of forging force, barreling parameter and final shapes with experimental results 

of the isothermal hot compression tests in different temperatures and ram velocity. 

The force-stroke curves obtained from the hot compression tests in comparison with the predicted 

results obtained from finite element method have been shown in  

. As can be seen, the results show that the FEM 

predictions are in good agreement with the 

experimental results as the mean absolute 

percentage error is 12.67% for prediction of 

forging force.  

  

Fig. 2. Comparison between the experimental and FEM results of the forging force at different processing 

conditions 
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Fig. 3. The comparison between experimental 

results and FEM prediction of final shapes under 

different conditions 

 

 shows comparisons between the experimental 

and finite element simulation barreling 

parameters and final specimens shapes under 

different hot forging conditions. It can be seen 

that the simulated samples have similar shapes 

with the experimental ones after isothermal hot 

forging process. The finite element and 

experimental geometry dimensions are almost 

the same under different deformation 

conditions. Table 2 shows the shape errors 

between experimental and simulated specimens. 

The relative errors of Rn and Rb change between 

0.62 to 3.14% and 0.18 to 2.08%, respectively. 

 

 

 

 

 

Fig. 3. The comparison between experimental results and FEM prediction of final shapes under different 

conditions 

 

Fig. 2. Comparison between the experimental and FEM results of the forging force at different processing 

conditions 
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Table 2. Shape errors between experimental (Exp) and simulated (Sim) specimens under different processing 

conditions 

 (Temperature℃-

velocity mm/min) 

Exp(Rn) Sim(Rn) Error (%) Exp(Rb) Sim(Rb) Error (%) 

350-25 10.10 9.92 1.78 11.28 11.24 0.35 

350-250 10.04 9.82 2.19 11.22 11.16 0.53 

400-25 9.90 9.80 1.01 11.20 11.18 0.18 

400-250 9.72 9.86 3.14 11.52 11.28 2.08 

450-25 9.98 9.82 1.60 11.24 11.21 0.26 

450-250 9.86 9.70 2.64 11.28 11.24 0.35 

500-25 9.70 9.66 2.42 11.30 11.22 0.71 

500-250 9.64 9.58 0.62 11.36 11.21 1.32 

Therefore, the comparison of the results obtained by simulation tests with the experimental results 

allowed verifying the precision of the proposed FEM model for the forging process under investigation, 

and can reliably be used as a surrogate resource to data for artificial neural network modeling. 

 

3-Artificial neural network model development 
Artificial neural network (ANN) is a non-linear statistical data modeling tool that can be used to model 

complex relationships between inputs and outputs or to supply patterns in data [32]. A typical neural 

network consists of an input layer, one or more hidden layers and an output layer, which are connected 

by the processing units called neurons. The development of an ANN model is generally consisted of 

the following steps: (i) to collect the signs, symptoms and experimental data; (ii) to determine the 

input/output parameters; (iii) to analysis and pre-process the collected data; (iv) to train the network; 

(v) to test the trained network and (vi) to evaluate the performance of the developed ANN [33]. Among 

various kinds of ANN approaches that have been, the multilayer perceptions (MLP) based feed forward 

with back-propagation algorithm (BP) is the most popular in materials processing control and 

engineering applications [34]. In the feed-forward BP network, the final predicted outputs are 

compared with the target data outputs, and the errors are calculated. These errors are used for adjusting 

the weights of each of the neurons. The process of using the target data outputs to minimize the mean 

square error iteratively is called as training the network. The iterations are repeated until a specified 

convergence is reached. The weights of the trained network are stored, and can be used later for 

predicting outputs given a different set of inputs. The convergence of the network is determined by the 

mean square error (MSE) between the target and predicted output data [35]. 

 

MSE =
1

𝑁
∑(M𝑖 − Pi)

2

𝑁

𝑖=1

 

(4) 

 

Where M𝑖 is the measured finding, Pi is the predicted data from ANN model, and N is the total number 

of employed data pairs in the investigation. Problems with the gradient descent approach are slow 

convergence speed and existence of local minimum for target function, therefore several high 

performance algorithms have also been proposed like variable learning rate algorithm, resilient 

algorithm, conjugate gradient algorithm, quasi-Newton algorithm, and Leven berg–Marquardt 

algorithm [32]. 

In this study, a three-layer feed forward back-propagation ANN has been employed to describe the hot 

forging process in which the inputs consist of deformation temperature, ram velocity, stroke and 

frictional factor, while the forging force, barreling parameter and final shape are considered as the 

output variable. One hidden layer was employed to test the present BP network. The schematic 

representation of the ANN architecture is shown in 
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Fig. 4. The schematic of the ANN architecture with one hidden layer 

. The architecture of the neural network relates to the number of the neurons in the hidden layer. The 

effect of the number of neurons in the hidden layer on the convergence criterion was studied 

numerously. It is very complicated to choose the number of neurons in hidden layer, which is usually 

determined according to the experiments or researchers’ trial. If the architecture of neural network is 

too simple, the trained network might not have enough ability to learn the process correctly. 

Conversely, if the architecture is too complex, it may not converge during training [36-37]. In order to 

determine the suitable number of neurons in the hidden layer, the trial and error method was started 

with two neurons in the hidden layer and further carried out with more neurons. It was found that a 

network with one hidden layer containing 14 hidden neurons gave a minimum MSE and was therefore 

considered as the optimal structure for the prediction of hot forging process at various conditions. The 

effect of the number of neurons in hidden layer on the network performance is shown in 
Fig. 5. The influence of number of neurons in the 

hidden layer 

 

. 

 

 

Fig. 4. The schematic of the ANN architecture with one hidden layer 

 

 

 

Fig. 5. The influence of number of neurons in the hidden layer 

 

 

Before the training of the network begins, it is 

necessary to normalize the input and output data 

within the range from 0-1 in order to obtain a 

same form for the network to read. The pre-

processing procedure, which can make the 

neural network training more efficient, has been 

used the following normalization equation [38]: 
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Xn = 0.1 + 0.8 × (
X − Xmin

Xmax − Xmin
) 

(5) 

 

Where X is the original data and Xn the unified 

data corresponding to X, Xmin and Xmax are the 

minimum and maximum value of X, 

respectively. 

In the present ANN, 448 data sets selected from 

the FEM results were divided into two subsets: 

a training dataset (75%) and a test dataset (25%). 

During establishing the ANN, 336 data sets were 

used to train the network model, and the other 

112 data sets at displacement between 0.8 and 

5.4 mm were applied to test the performance of 

the ANN. The training function was Leven 

berg–Marquardt because it is fast convergence 

in training [34]. Meanwhile, a hyperbolic 

tangent sigmoid transfer function is used for 

neurons in the hidden layers and the output 

layer. The ANN architecture and functions used 

in the resulted model have been summarized in 

Table 3. 

 

 
Table 3. The ANN architecture and functions 

AAN Parameters 

Learning function 

Training function 

Transfer function 

Performance function 

Number of input layer unit 

Number of output layer units 

Number of hidden layers 

Number of hidden layer units 

Iteration 

Feed-forward back-propagation  

Levenberg–Marquardt (trainlm) 

Tangent sigmoid (tansig) 

MSE 

4 

3 

1 

14 

10000 

4-Results and discussion 
In this study, the developed ANN is used to predict the forging force, barreling parameter and final 

shapes of the hot forging process data. The wide kinds of standard statistical performance evaluation 

measures have been applied to evaluate the model performance. The predictability of the neural 

network is expressed in terms of correlation coefficient (R), average absolute relative error (AARE), 

and root mean square error (RMSE) , expressed as: 

 

𝑅 =
∑ (𝑀𝑖 − �̅�)(𝑃𝑖 − �̅�)𝑁
𝑖=1

√∑ (𝑀𝑖 − �̅�)2∑ (𝑃𝑖 − �̅�)2𝑁
𝑖=1

𝑁
𝑖=1

 
(6) 

 

𝐴𝐴𝑅𝐸⁡(%) =
1

𝑁
∑|

𝑀𝑖 − 𝑃𝑖
𝑀𝑖

| × 100

𝑁

𝑖=1

 

(7) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑀𝑖 − 𝑃𝑖)

2
𝑁

𝑖=1
 

(8) 

Where M𝑖 is the measured finding, Pi is the predicted data from ANN model,  M̅ and P̅ are the mean 

values of all the measured and predicted results, respectively, and N is the total number of employed 

data pairs in the investigation 

 

4-1-Forging force 

The performance of the developed ANN has been plotted in 
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a and b for the forging force, on training and 

testing data, respectively. As can be seen, the 

proposed ANN model can predict the forging 

force with a reasonable accuracy. The developed 

ANN model for forging force prediction have 

correlation coefficients of 0.9989 and 0.9984 for 

the training and testing data set, respectively, 

and have AARE of 1.489% and 2.10% for the 

training and testing data set of ANN model, 

respectively. 

  

  
(a) (b) 

 

 

 
Fig. 6. Correlation between the simulated and ANN predicted forging force for the (a) training and (b) testing 

data set 

 

Fig. 7 compares the force–displacement curves 

predicted by the FEM and ANN with different  

 

temperatures, frictional factor and ram velocity 

during isothermal hot forging. 

 

 
Fig. 7. Force–displacement curves predicted by FEM and ANN under different conditions 

The comparison between the FEM results and ANN predications on the forging forces at different 

temperatures has been shown in 

. As it is obvious, the forging force will decrease and the accuracy of ANN model prediction clearly 

increase with increasing the forging temperature. Fig. 9 shows the effect of ram velocity on the forging 

force. As it is clear, the forging force increases with increasing of the ram velocity, and the developed 

ANN model can estimate forging force with a reasonable accuracy as the maximum errors of 

approximations is almost 0.65% at velocity of 250 mm/min. The comparison between the FEM results 

and ANN predications on the forging forces at different friction factor has been shown in 
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. It can be seen that the 

forging force increases 

with increasing of the 

values of friction 

factors and the absolute 

percentage error 

between the FEM and 

ANN prediction of the 

force changes between 

0.031% and 1.107% for 

the different friction 

factors. The RMSE, R 

and AARE values 

obtained from the 

developed ANN at 

different temperature 

levels have been listed 

in Table 4. It can be 

seen that the maximum 

values of R, AARE and 

RMSE obtained for 

training and testing data 

of the developed ANN 

model are 0.9991, 

1.691% and 0.092 MPa, 

and 0.9989, 2.043% and 

0.125 MPa, 

respectively. 

 
           Fig. 8. Effects of temperature on the forging force for ram velocity  

              of 250 mm/min and friction factor of 0.5, in displacement of 2.4 mm 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Effects of ram velocity on the forging force at temperature of 350℃,  

friction factor of 0.1 and displacement of 5.4 mm 
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Fig. 10. Effects of frictional factor on the forging force for ram velocity of  

25 mm/min, temperature of 500℃ at displacement of 

4-2-Barreling parameter 

The barreling parameter (B) has been calculated 

by Eq. (3) for each ram displacement under 

different deformation conditions. The 

comparison between the FEM results and ANN 

predications of barreling parameter for training 

and testing data has been presented in Fig. 11a 

and b, respectively. As it is clear, the results of 

ANN model and FEM are extremely similar 

hence the training and testing stages of the 

developed ANN have been successfully 

constructed and the developed ANN model can 

predict the barreling of specimen with a 

reasonable accuracy. Also, it can be seen that R 

and AARE values are 0.9951 and 5.32%, 

respectively in the training stage of the ANN. 

Whereas, the values of R and AARE are 0.9951 

and 6.75% respectively for the testing stage of 

the ANN.  

 

 

  
(a) (b) 

 

 

Fig. 11. Performance of proposed ANN model in prediction of barreling parameter for the  

(a) training and (b) testing data set 
 

 

The influences of the processing parameters 

consist of friction, temperature and ram velocity 

on the barreling parameter were investigated 

using FEM and ANN model. The variations of 

the barreling parameter with ram displacement 

or stroke in the different friction factor (m) have 

been shown in Fig. 12. The investigations of 

barreling results show that the frictional shear 

factor has the main effect on the barreling 

parameter during hot forging as the magnitude 

of barreling increases with increasing of friction. 
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Fig. 13 shows the effects of temperature on 

barreling. As it is clear, the barreling parameter 

decreases with the increasing of temperature at 

constant velocity and friction coefficient. This 

behavior occurs due to the increase in the plastic 

flow and the softening behavior of the material 

at elevated temperatures. The effects of ram 

velocity on the barreling parameter have been 

shown in Fig. 14. As can be seen, at constant 

friction factor and temperature, the effects of 

ram velocity on the barreling is irregular due to 

strain hardening. 

 

 
Fig. 12. Comparison between the FEM and ANN prediction of the barreling parameter for different friction 

factor at temperature of 350℃ and ram velocity of 250 mm/min 

 

 
Fig. 13. Comparison between the FEM and ANN prediction of the barreling parameter for different 

temperature, at ram velocity of 125 mm/min and friction factor of 0.5 
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Fig. 14. Comparison between the FEM and ANN prediction of the barreling parameter for different ram 

velocity, at temperature of 500℃ and friction factor of 0.5 

 

The standard statistical values of the barreling 

parameter predicted by the developed ANN 

model at different temperature levels have been 

listed in Table 5. It can be seen that the 

maximum values of R, AARE and RMSE are 

0.9968, 6.172% and 0.042 MPa, respectively in 

training stage of the ANN R and AARE values 

are 0.9951 and 5.32%, respectively, in the 

training stage of the ANN, whereas, the values 

of R, AARE and RMSE are 0.9967, 7.778% and 

0.041 MPa respectively for the testing stage of 

the ANN.  

 

 
Table 5. Statistical values of barreling parameter predicted by ANN 

Temperature (℃) R AARE (%) RMSE (MPa) 
 

  Training testing Training testing Training testing     
  

350 

400 

450 

500 

 0.9935 

0.9964 

0.9968 

0.9947 

0.9967 

0.9941 

0.9862 

0.9920 

6.172 

4.607 

4.997 

5.629 

4.074 

7.117 

7.778 

6.889 

0.042 

0.032 

0.031 

0.032 

0.034 

0.038 

0.041 

0.039 
 

4-3-Final shapes 

As it was mentioned earlier, the final shapes of 

hot forged specimen are indicated by Rb and Rn 

which are the maximum and top surface radiuses 

of the hot forged specimen, respectively (see 

Fig. 1). Fig. 15a and b shows the comparison of 

the FEM and ANN results of the final shapes (Rn 

and Rb) of the forged specimen on training and 

testing data, respectively. It indicates that the R 

values are 0.9986 and 0.9988 for the training and 

testing stages of ANN, respectively. Moreover, 

AARE values are 0.331% and 0.322% for the 

training and testing stages of ANN, respectively. 

As it is clear, the developed ANN model can 

predict the final shape of the forged specimen 

with a reasonable accuracy.  
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(a) (b) 

 

Fig. 15. Performance of proposed ANN in prediction of final shapes (a) training and (b) testing 

The variations of Rn and Rb values with height 

of the forged specimen predicted by ANN and 

FEM have been shown in Fig. 16. As it is seen, 

the final shape sensitively increases with 

increasing of the friction coefficient in a same 

height of the forged specimen. Comparison of 

the FEM and ANN results indicates the 

predicted final shapes at different condition are 

in good agreement during hot forging. Also it is 

obvious that the distance between of the Rn and 

Rb values increases with increasing friction and 

decreasing height of the forged specimen at the 

constant temperature and ram velocity. 

The predictability of the final shapes by the 

developed ANN model at various temperatures 

has been summarized in Table 6. It can be seen 

that the maximum values of R, AARE and 

RMSE are 0.9989, 0.356% and 0.018 MPa, 

respectively in the training stage of the ANN, 

whereas, the values of R, AARE and RMSE are 

0.9993, 0.378% and 0.017 MPa respectively for 

the testing stage of the ANN.  

 

 

  
(a) (b) 
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(c) (d) 
 

Fig. 16. Comparison between the FEM and ANN results of final shapes at temperature of 400℃, ram 

velocity of 25 mm/min and frictional factor of (a) 0.1, (b) 0.3, (c) 0.5 and (d) 0.7 

 

 
Table 6.  Statistical values of final shapes predicted by ANN 

Temperature (℃) R AARE (%) RMSE (MPa) 
 

  Training testing Training testing Training testing     
  

350 

400 

450 

500 

 0.9989 

0.9988 

0.9968 

0.9984 

0.9988 

0.9991 

0.9993 

0.9982 

0.324 

0.321 

0.342 

0.356 

0.378 

0.313 

0.278 

0.330 

0.015 

0.015 

0.016 

0.018 

0.017 

0.014 

0.012 

0.015 
 

 

 

5-Conclusions 
In this work, an artificial neural network model 

was developed for the accurate prediction of 

isothermal hot forging process behavior of 

AlCuMgPb aluminum alloy under different 

processing conditions using experimental data  

 

and a thermo–viscoplastic analysis based on a 

thermo-mechanical three-dimensional finite 

elements. The FE model was developed and 

verified to provide a data base for training and 

validation of the neural network. The developed 

ANN was used for prediction of the forging 

force, barreling and final shapes of metal being 

deformed. Noting the results of the FEM 

simulation and the developed ANN predictions, 

the following conclusions can be drawn: 

 By comparison between the measured 

data and simulation results, the 

developed finite element model can 

describe well the hot forging behavior 

of AlCuMgPb aluminum alloy under 

different process conditions.  

 The developed ANN predictions are 

found to be in extremely good 

agreement with the simulation results 

which indicates the capability of the 

developed model for predicting the 

effects of various parameters on the hot 

forging process.  

 The ANN model is capable of 

considering the effects of important 

parameters such as temperature, height 

reduction, ram velocity and friction 

coefficient. 

 Ram velocity and temperature have the 

maximum effects on the forging force, 

as the forging force increases with 

increasing of the ram velocity and 

decreasing of the forging temperature. 

 The friction factor has the main effect 

on the barreling parameter and final 

shape during hot forging as the barreling 

parameter increases with increase of the 

friction values. 

 Using ANN which has been learned 

properly, the time of process analysis 



H. R. Rezaei Ashtiani et al, Journal of Advanced Materials and Processing, Vol. 6, No. 1, 2018, 29-45 44 

44 

 

can be clearly reduced in comparison 

with FEM. 

  
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