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The aim of this research is to characterize the porous bones by an 

ultrasonic method using Lamb waves. In recent years, 

characterization of such materials has attracted much attention of the 

researchers in the field of medicine. It requires the development of 

more efficient technology for obtaining the necessary quality and 

security. This paper aims to exploit the dispersion curves of the 

Lamb wave, as a new originate alternative, to characterize the porous 

bone. The method is modeled by using the Schoch theory for the 

measurement of ultrasonic parameters, namely the longitudinal and 

transversal velocities and densities, and then we deduce the 

mechanical properties of samples with different porosity in a 

theoretical way. The theoretical results were compared with 

experimental data, and it was found that the predicted values were of 

the same order of measurement as the experimental ones. The 

correlation coefficient between the experimental ultrasound 

velocities and the theoretical velocities predicted by the Schoch 

theory was R=0.96. 
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1-Introduction 

The use of acoustic phenomena (including 

ultrasonic) to characterize bone tissue should 

diagnose osteoporosis with high reliability and 

to effect a monitoring of the evolution of the 

disease, especially during its processing [1]. 

Before this can happen, extensive research 

should be carried out to understand how to set 

the vibration and acoustic fields in the bone 

tissue, and how to extract the bones 

characteristic parameters in these areas. In 

recent years, Lamb waves have been a great 

interest [2–7] as a vehicle for in-vivo diagnosis 

of osteoporosis and other bone afflictions [8]. 

The ultrasonic technique is more suitable to be 

used in medicine [9]. The elastic wave velocity 

in the bone depends on the following 

parameters: density, porosity, saturated fluid 
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and temperature [10-11]. This study aims to 

correlate the elastic wave velocities with the 

mechanical properties of the bone. Furthermore, 

the primary objective of this paper is to use the 

dispersion curves as a new original alternative 

for characterizing porous materials in general 

and porous bones in particular. We brought the 

propagation of Lamb waves, in particular, 

according to the porosity of cancellous bone. 

This unusual phenomenon is considered to 

become a powerful tool for the diagnosis of 

osteoporosis because the wave propagation 

behavior is apparently dependent on the bone 

structure. 

Accordingly, some studies have been published 

for the diagnosis of osteoporosis, i.e. 

monophotonic absorptiometry, biphotonic 

absorptiometry, two-energy X-ray 
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absorptiometry (DEXA), and quantitative 

computed tomography [12]. The main 

advantage of using the ultrasonic wave 

propagation in porous bone is that it is a non-

destructive and non-invasive technique [10-11], 

providing information on the sample in the 

vicinity of the solid-liquid interfaces. 

The first part of this article presents a modeling 

study to determine the mechanical properties of 

the porous bones depending on the porosity 

degree using the Schoch model. This model is 

used for modeling the Lamb wave propagation 

in the porous bone. In the second part of this 

paper, we carry out an experimental study by an 

ultrasound method to define the mechanical 

properties of the porous bone according to the 

porosity ratio. The innovative part is devoted to 

the study of the possibility of replacing the 

regular destructive testing by ultrasonic non-

destructive techniques to determine the physical 

and mechanical properties of porous materials 

[10-11]. To do this, we must develop an 

ultrasonic transmission method in which the 

sample is emerged in water. We used two 

identical plan transducers with 5MHz in the 

center frequency. So, we prepared the sample of 

bovine trabecular bone as well polished bony 

plates. 

 

2-Materials and Methods 
2-1-Theoretical study 

2-1-1- Schoch theory 

In recent years, a theoretical simulation of power 

reflector Schoch has been developed [13, 14]. 

This simulation allows calculating the reflection 

coefficient at the interface between the coupling 

liquid and homogeneous, semi-infinite materials 

[15–17]. The input parameters are the velocity 

of the acoustic wave in the coupling liquid liqV
, 

the velocities of the longitudinal and transversal 

modes in the studied material, lV
and tV

, and the 

density of the liquid and the solid, l and t . 

To introduce the porosity of the porous materials 

it is necessary to make changes in the acoustic 

parameters. Phani and Maitra [18, 19] proposed 

an expression for the longitudinal velocity of 

porous materials that take into account the 

morphology of the pore and are valid for all 

porosity values to solve this problem. This 

empirical relationship is formulated as: 

 

𝑉𝑙 = 𝑉𝑙0(1 − 𝜑)𝑝 (1) 

 

where lV
 is the bone longitudinal wave velocity, 


 is the bone porosity, 0lV

 is the bone 

longitudinal for
0

, and p constant 

coefficient depends on the pore morphology. 

The Phani equation is modified when working 

in a porous medium saturated with a fluid. This 

equation must take into account the saturating 

fluid velocity, fV
. In this case, we have the 

relation: 

𝑉𝑙 = 𝑉𝑙0(1 − 𝜑)𝑚 + 𝜑𝑉𝑓 (2) 

We know that transverse waves do not propagate 

in fluids; that is why we selected an empirical 

relationship for the transverse velocity 

approximating that given by expression (1): 

 

𝑉𝑡 = 𝑉𝑡0(1 − 𝜑)𝑠  (3) 

 

where tV
 is the bone transversal wave velocity, 

0tV
is the bone transversal velocity for

0
. 

The dependence of the parameters m and s with 

the geometry of the pores in the porous media 

has been studied by Phani [18, 19]. He found 

that the values of these numbers ranged between 

0.5 and 1.5 for a relatively ordered porous 

structure. For cylindrical pores, m and s are 

close to one, and for spherical pores the values 

get closer to 0.5. In this study we considered 

cylindrical pores m=s=1. 

The granny ways relies on densities of the non-

porous part s , the fluid portion f  and the 

porosity


  of the porous medium by the 

following expression: 

 


𝑝 = 
𝑠(1 − 𝜑) + 𝜑  𝑓 (4) 

 

The Victorov relationship [20] could easily 

determine the velocity of Rayleigh waves,  

𝑉𝑅 using longitudinal and shear velocities: 

𝑉𝑅 = 𝑉𝑡

0.718 − (𝑉𝑡 𝑉𝑙⁄ )2

0.750 − (𝑉𝑡 𝑉𝑙⁄ )2
 

(5) 

In the following paragraphs, we will present 

numerical simulation results obtained from the 

Schoch theory for Lamb wave propagation when 
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considering a homogeneous and non-porous 

medium corresponding to porous medium 

acoustic characteristics. 

 

2-1-2- Modeling of Lamb waves in porous 

bones 

2-1-2-1- Lamb modes 

The plate model has been used by many 

researchers for modeling the propagation of 

elastic waves in the porous bone [10, 15, 21–25]. 

The wave propagation in elastic plates gives 

rise, in general, to guided waves known as Lamb 

waves. Many studies conducted by various 

researchers suggest that under certain 

conditions, the trabecular bone plate behaves as 

a waveguide. Some researchers have also 

extended the wave propagation model in the 

trabecular bone to the distribution model in the 

plates. 

Lamb waves exist in the form of resonance 

modes or frequency and phase velocity resulting 

in a standing wave between the boundaries of 

the plate. The longitudinal and transversal 

components give rise to symmetrical and anti-

symmetrical modes (Fig. 1). The symmetric 

modes are longitudinal modes or compression 

modes which are rated as 𝑆𝑛 with n ≥ 0. The anti-

symmetrical modes are bending modes which 

are estimated  𝐴𝑛  with n ≥ 0 [24]. 

To study the different modes which are 

generated in a homogeneous and isotropic plate, 

one has to resolve the problem of propagation of 

elastic waves in a plate placed in the void [25]. 

The solutions of the equation about the wave 

propagating at the plate have to satisfy the 

boundary conditions, and this leads to the 

dispersion equations of the symmetric (S) and 

anti-symmetric (A) Lamb modes (Fig. 2) [24]. 

 

 
Fig. 1. Geometry problem [25]. 

 
Fig 2. Strain in an isotropic plate due to the propagation of Lamb waves corresponding to a mode: a) 

symmetric, b) anti-symmetric. The vector n is the direction of propagation; the vector u is the displacement 

vector [26]. 
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2-1-2-2- Reflection and transmission 

coefficients 

Some theoretical and experimental studies have 

shown that the reflection coefficient 

(transmission respectively) has singularities 

when a surface wave (Rayleigh wave) or a 

guided wave (Lamb wave) is energized. 

These phenomena have been studied from the 

analytical expression of the reflection 

coefficient of a plane wave by an infinite fluid-

solid interface semi-infinite, and fluid- fluid 

interface. These studies provide the one hand 

interpretation of the singularities of the 

reflection coefficients (transmission 

respectively) regarding the excitation of guided 

or surface waves and, on the contrary, show the 

similarities between the type of guided Lamb 

waves and Rayleigh surface waves [24-26]. 

The reflection coefficient (R) and transmission 

coefficient (T) of a plan incident wave at an 

incident angle θ, by an immersed plate, may be 

placed into the form [26]: 

𝑅 =
𝐶𝑎𝐶𝑠 − 𝜏2

(𝐶𝑎 + 𝑗𝜏)(𝐶𝑠 − 𝑗𝜏)
 

 

(6) 

𝑇 = 𝑗𝜏 (
1

(𝐶𝑎 + 𝑗𝜏)
+

1

(𝐶𝑠 − 𝑗𝜏)
) 

 

 

(7) 

with 𝜏 =
𝑍1

𝑍𝐿
  Or 𝑍1  is the acoustic impedance of 

the water and 𝑍𝐿 is the longitudinal acoustic 

impedance of the material under study. 𝐶𝑎 

and 𝐶𝑠 are linked to anti-symmetric and 

symmetric deformations of faces, respectively. 

The terms 𝐶𝑎  and 𝐶𝑠   are from the continuity 

conditions of displacements and efforts to 

plate/water interfaces. They are given by the 

following expressions [26]: 

𝐶𝑎

= 𝑐𝑜𝑠2(2𝛾)𝑡𝑎𝑛
𝑃

2

+ (
𝑉𝑇

𝑉𝐿
)

2

sin(2𝜃) sin(2𝛾) 𝑡𝑎𝑛
𝑄

2
 

 

(8) 

  

  

𝐶𝑠

= 𝑐𝑜𝑠2(2𝛾)𝑐𝑜𝑡
𝑃

2

+ (
𝑉𝑇

𝑉𝐿
)

2

sin(2𝜃) sin(2𝛾) 𝑐𝑜𝑡
𝑄

2
 

 

 

(9) 

 where  𝑄 = 𝑘𝑇 cos(𝛾) 𝑑   and 𝑃 = 𝑘𝐿 cos(𝜃) 𝑑  

Assuming that guided waves are generated in the 

plate, Schoch [13] showed  that equations (8) 

and (9) give the natural frequencies of the 

vibration modes of a immersed plate in water. 

They correspond to the poles of the 

transmittance (reflection respectively) given in 

the previous paragraph. 

𝐶𝑎 + 𝑗𝜏 = 0 , 𝐶𝑠 − 𝑗𝜏 = 0 (10) 

 

The last equations are actually Rayleigh-Lamb 

equations for an immersed plate the direction of 

propagation, and vector u is the displacement 

vector [26]. If the fluid has a much lower density 

compared with the solid, the poles of the 

reflection coefficients correspond to the 

excitation of an anti-symmetric Lamb mode 

(𝐶𝑎 = 0) or symmetric (𝐶𝑠 = 0). In summary, 

the excitation of an anti-symmetrical Lamb 

mode or symmetrical modes manifests itself by 

a maximum of the transmission coefficient 

(cancellation of the reflection coefficient), and 

vice versa. Observing a maximum transmittance 

(zero in reflection coefficient) to a frequency 

and a given incident angle reflects the existence 

of a Lamb mode propagating at this frequency in 

the plate. 

In this paragraph, the equations of a self-

dispersion plate and an immersed plate were 

established. The influence of the existence of 

Lamb waves on the reflection and transmission 

coefficients was emphasized. According to the 

theoretical exposition, the excitement of a Lamb 

mode by the incident beam is reflected by the 

maximum transmission rate (minimum 

reflection coefficient). The dispersion curves of 

a plate immersed in a fluid are then obtained by 

finding the maxima of the transmission 

coefficient. 

 

2-2- Experimental study 

2-2-1- Specimen preparation 

A series of innovative measures were carried out 

on bovine bone samples. The heads of the 

femoral bone were used to cut these samples in 

parallelepiped form. They are of varying 

thicknesses and densities. At first rough cut was 

performed to eliminate the cortical layer and 

uncover the trabecular bone alone. Then, a much 

finer cut was performed using a diamond saw to 

low speed rotating. Distilled water was used to 
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lubricate and cool the saw in the second process 

to avoid damaging the surface of the specimen 

cut [27]. The samples were immersed in hot 

water to remove the soft tissues and the bone 

marrow residues contained in the pores. They 

were then washed under high pressure with cold 

water. After repeating the operation several 

times, the samples were first immersed for 24 

hours in distilled water and then stored in a 

solution of trichlorethylene for four hours and 

washed again in distilled water bath for 24 

hours. 

 

2-2-2- Experimental setup 

Fig. 6 shows the experimental setup of 

ultrasound measurements used in this study. The 

transducer and the samples are immersed in 

water. The sensors with a central frequency of 

5MHz transmit longitudinal ultrasonic waves to 

the bone through the water after it receives the 

ultrasound waves through the sample. The 

emitter transducer is excited using an ultrasonic 

pulse generator which also plays the role of an 

amplifier of the sensed signals. The generator is 

connected to a PicoScope to acquire the signal 

through the sample. The signals picked up with 

the PicoScope are recovered on a computer. The 

signs revealed on the computer using a Pico-

Scope National Instrument. The LabView 

software examines PicoScope, so we have 

developed a platform in the favorable 

environment of the software to process 

ultrasound signals acquired to deduce the 

ultrasonic parameters of the trabecular bone. 

 

Fig. 3. Schematic diagram of the apparatus used in the experiments. 

 

3- Results and Discussion 
3-1- Numerical simulation of dispersion 

curves 

The method employed in this study consists of 

seeking maxima of the transmittance modulus of 

a plate immersed in a fluid (water in this case). 

These peaks correspond to the Lamb waves. The 

model developed allows, therefore, for an 

angular and frequency scanning determining the 

pairs (incidence angle, frequency) for which a 

Lamb wave propagates by [26]: 
𝜌𝑓𝑙𝑢𝑖𝑑

𝜌𝑝𝑙𝑎𝑡𝑒
≪ 0. 

Moreover, the program for this prediction is 

executed using Matlab. The acoustic parameters 

of the materials (bone, water, and air) used in 

this calculation are shown in Table1. Fig. 3 

presents the theoretical dispersion curves of the 

steel plate of 2 mm thick. This figure shows the 

different modes and areas of critical angles. It 

should be noted that the curves of the higher 

order modes all undergo an infection around the 

critical angle of the longitudinal waves 𝜃𝑐𝑙 to 

converge towards the critical angle of the 

transverse waves 𝜃𝑐𝑡 in the material. The zero-

order modes converge at high frequency to the 

critical angle of Rayleigh  𝜃𝑐𝑅.
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Fig. 4. The theoretical dispersion curves of the steel plate of 2 mm thick. 

 
Table 1.  Acoustic properties of trabecular bone, water, and air [9]. 

 

 Density 

( 𝒌𝒈/𝒎𝟑) 

Longitudinal velocity 

(m/s) 

Transversal velocity 

(m/s) 

Trabecular bone 1960 3861 1981 

Water 1000 1500 - 

Air 1 300 - 

  

Figs. 4 and 5 show the Lambs waves dispersion 

curve of the studied bone plates for the air-

saturated and water-saturated bone, 

respectively. For each porosity bone, we 

represent the corresponding dispersion curve. 

From the dispersion curves of the air-saturated 

bone and that of water-saturated bone, we can 

compare the effect of water and air as saturation  

fluid on the propagation of ultrasonic Lamb 

waves. From Figs. 4 and 5 we have observed that 

the more the porosity increases the higher the 

critical angles will be. Therefore, under the law 

of Snell-Descartes [15], the velocities of 

longitudinal and transversal sound wave are 

becoming smaller. 

We note that the dispersion curves differ from a 

plate to another depending on the porosity 

degree. This difference is related to the number 

of modes, the frequency of occurrence, and the 

frequency band between two continuous modes. 

These curves clearly show the dispersive and 

multimodal nature of the Lamb wave 

propagation in each plate. Also, they confirm the 

smooth running of the algorithm created as part 

of this work. 

By analyzing these acoustic signatures along the 

axis angles or frequencies, we can draw 

significant findings. 

Interpretation of these acoustic signatures along 

the angles axis highlights the existence of two 

areas of analysis: for example, in the case of 

porosity equal to 10% the first extends to about 

28° which corresponds to the critical angle for 

the longitudinal wave propagation. The second 

critical angle to about 50° corresponds to the 

critical angle of the transverse wave 

propagation. Note that the curves of higher order 

modes suffer any infection around the critical 

angle of longitudinal waves to converge to the 

critical angle of transverse waves in the material. 

It should be noted that there are two areas of 

analysis following the frequency axis: the first is 

extended up to about 3MHz. The region where 

there is only the fundamental Lamb mode: A0 

and S0. The second is extended from 3 to 5 MHz 

where the modes are highly dispersive. In this 
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region, there are the higher order propagation 

modes of different types of the wave. 

 Another interesting aspect of these 

curves concerns their convergence at high 

frequencies. When the frequency tends to 

infinity, the fundamental modes A0 and 

S0 converge to the velocity of the Rayleigh 

mode in the material (little less than the 

transversal velocity), while the order modes 

curves above all suffer a bend about the 

longitudinal velocity to converge to the 

transversal velocity of the material (See Fig. 4-a 

for a porosity of bone φ = 5%  ). Whereas when 

the frequency becomes large, the fundamental 

modes A0 and S0 tend towards a limit angle 

value. This value allows obtaining the Rayleigh 

velocity in the material [27]. On the other hand, 

low frequency, mode S0, approaches a constant 

value corresponding to the critical angle of 

longitudinal waves, and its dispersion is 

minimal, while mode A0 decreases 

monotonically to zero, with maximum 

dispersion. To prove the distribution of different 

wave velocities according to the porosity degree 

in the systems studied, it is necessary to 

calculate the wave velocities (longitudinal, 

transversal and Rayleigh) at various porosity 

rates. 

It should be noted that we can exploit the 

dispersion curves obtained theoretically to 

measure the longitudinal (VL), transversal (VT ), 

and Rayleigh (VR) velocities in the bone plates. 

Knowing the critical angles of longitudinal 

(θcL), transverse (θcT ), and Rayleigh (θcR) 

waves, we deduce speeds, using the following 

formulas: 

𝑉𝐿 =
𝑉𝑤𝑎𝑡𝑒𝑟

sin(𝜃𝑐𝐿)
 

 𝑉𝑇 =
𝑉𝑤𝑎𝑡𝑒𝑟

sin(𝜃𝑐𝑇)
        

  𝑉𝑅 =
𝑉𝑤𝑎𝑡𝑒𝑟

sin (𝜃𝑐𝑅)
                                                 (11) 

 

From these results, we could highlight the 

different wave velocities (longitudinal, 

transverse and Rayleigh) versus porosity rate to 

arrive at calculating the evolution of various 

elastic parameters depending on the porosity of 

the bone plate. 

After measurement of speeds, we can recover 

the mechanical properties of porous bone; we 

automatically go back to the mechanical 

properties by using the following theoretical 

relations: 

 

𝐸 = 𝜌𝑉𝑡
2 (

3𝑉𝑙
2 − 4𝑉𝑡

2

𝑉𝑙
2 − 𝑉𝑡

2 ) 
 

(12) 

𝜈 =

1
2 (

𝑉𝑡
𝑉𝑙

⁄ )
2

− 1

(
𝑉𝑡

𝑉𝑙
⁄ )

2

− 1

 

 

(13) 

 

𝐺 =
𝐸

2(1+𝜈)
   (14) 

Where E, G and 𝜈 are Young’s modulus, 

transverse module, and Poisson ratio, 

respectively. 

Table 2 shows the simulation results of our 

theoretical measures, namely the results of the 

longitudinal, transversal, and Rayleigh 

velocities, Young modulus, transverse modulus 

and Poisson ratio of different bone porosity rates 

studied. Quantitative interpretation of the above 

results is utilized to evaluate the longitudinal 

velocity depending on the other physical 

parameters of bone. The obtained results show a 

direct effect of density, transverse velocity, 

Young’s modulus and Poisson’s ratio of the 

longitudinal wave velocity. Moreover, so far, 

there is no direct method to determine the 

mechanical properties of porous bone. That is 

why it seems useful to show the relationship 

between these properties. Correlations provide a 

better estimation of the physical properties of 

bones knowing the longitudinal velocity; this is 

deduced from the following simple 

mathematical relations: 

𝑉𝑡 = 0.839𝑉𝑙 − 1258.577 (15) 

𝜌 = 0.406𝑉𝑙 + 390.089 (16) 

𝐸 = 
(0.406𝑉𝑙

2 + 13330.049𝑉𝑙

+ 11557873.854)103 

(17) 

𝜈 = 
(−0.720𝑉𝑙

2 − 4953.762𝑉𝑙

+ 60543203.175)10−8 

(18) 

𝐺 = 
(1.485𝑉𝑙

2 − 5149.038𝑉𝑙

+ 127552.145)103 

(19) 

  

The data analysis indicates that the longitudinal 

velocity of ultrasound can be used to evaluate 

the elastic modulus of the porous material. 
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Fig. 5.  Dispersion curves obtained theoretically for air-saturated trabecular bone plate for different porosity 

rates: a : 5%, b : 10%, c : 15%, d : 20%, e : 25%, f : 30%, g : 40%, h : 50%, i : 60%, j :70%, k: 80% and l : 

90%. 
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Fig. 6.  Dispersion curves obtained theoretically for water-saturated trabecular bone plate for different porosity 

rates: a : 5%, b : 10%, c : 15%, d : 20%, e : 25%, f : 30%, g : 40%, h : 50%, i : 60%, j :70%, k: 80% and l : 

90%.
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Table 2.  Values densities, acoustic wave velocities and elastic constants of water-saturated porous bone.

Porosity 

(%) 
ρ(Kg/𝐦𝟑) 𝐕𝐥(m/s) 𝐕𝐭(m/s) 𝐕𝐑(m/s) E(GPa) G(GPa) ν(x𝟏𝟎−𝟑) 

0 1960 3861.0 1981.0 1850.8 20.32 7.69 321.3 

5 1912 3743.0 1881,9 1760.8 18.02 6.77 330.8 

10 1864 3624.9 1782,9 1670.6 15.88 5.92 340.4 

15 1816 3506.9 1683,8 1580.1 13.90 5.19 350.2 

20 1768 3388.8 1584,8 1489.3 12.07 4.44 360.0 

25 1720 3270.8 1485,7 1389.3 10.40 3.79 370.0 

30 1672 3152.7 1386,7 1307.0 8.87 3.21 380.1 

40 1576 2916.6 1188.6 1123.6 6.23 2.22 400.4 

50 1480 2680.5 990.5 938.8 4.12 1.45 420.9 

60 1384 2444.4 792.4 735.1 2.50 0.86 441.3 

70 1288 2208.3 594.3 566.2 1.33 0.45 461.0 

80 1192 1972.2 396.2 378.3 0.55 0.18 479.0 

90 1096 1736.0 198.1 189.5 0.12 0.04 493.4 

3-2- Experimental results 

3-2-1- Example of signals through the bone 

Fig. 7 shows the incident signal generated by the 

transducer without sample(blue) and the signal 

transmitted by the plate of bovine trabecular 

bone (thickness =8 mm and porosity 

=50.8%)(red). Fig. 8 shows the incident signal 

generated by the transducer without sample 

(blue) and the signal transmitted by the plate of 

bovine trabecular bone (thickness =6.52 mm and 

porosity =60.4%)(red). These figures note that 

when the bone porosity increases the amplitude 

of the signals transmitted through the bone 

decreases. When the porosity of the bone 

increases, the bone becomes less dense and this 

is why we observe this reduction in the signal 

transmitted. 
 

3-2-2- The ultrasonic measurements 

It is hard or impossible to detect ultrasonic 

waves behind a whole bone as they are 

considerably attenuated by passing through the 

bone because of the high content of the air and 

wide intercellular gaps in the bone structure. 

Thus, the transmission method was used for 

measuring the high velocity within the bovine 

sample trabecular bone form of a parallelepiped 

plate. This non-destructive technique is 

fascinating to try the opportunity to assess the 

intrinsic quality of the bone by controlling its 

inner layer only knowing that the bone quality 

control starts from the trabecular part. 
 

3-2-2-1- Masurement of ultrasonic velocity 

For measuring the velocity of ultrasonic waves 

in the trabecular bone, we measure the flight 

time required for the wave to propagate the 

thickness thereof from which the ultrasonic 

signal that through by the bone. Thus the speed 

is calculated using the following formula: 

𝑉 =
𝑑

𝑡𝑣
 (20) 

where d is the thickness of the bone plate and 𝑡𝑣 

is the flight time. 
 

3-2-2-2- Measurement of elastic properties 

Some measurements were made on samples of 

bovine trabecular bone. Samples of the 

parallelepiped-shaped femur head of variable 

thickness and density (therefore variable 

porosity) were cut. After the soft tissue and bone 

marrow were removed from the bone samples, 

they were saturated by water. 
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Fig. 7. Time signal for trabecular bone; thickness of 

the bone = 8 mm, porosity: 50.8%. Red: signal 

through the bone, Blue: signal through the water 

without bone. 

 
Fig. 8. Time signal for trabecular bone; thickness of 

the bone = 6.52 mm, porosity: 60.4%. Red: signal 

through the bone, Blue: signal through the water 

without bone. 

 

In Table 3, we have listed the experimental 

ultrasonic velocities and elastic properties 

obtained on various samples as a function of 

bone porosity. This change is consistent with the 

theoretical values obtained using the Schoch 

model. The velocity decreases with increasing 

porosity. We measured the volume density, 

porosity, and the longitudinal speed of seven 

samples of trabecular bovine bone (Table 3). 

This work is only an introduction to the 

systematic study, already started to prepare a 

database of physical properties of trabecular, 

skeletal bones from different sites. Therefore, 

most of our discussion will focus on what we 

have seen so far. Nevertheless, even with the 

results we have obtained, we can draw some 

interesting conclusions limited to the samples 

studied. 

The ultrasonic longitudinal speed is a primary 

parameter that provides information on some 

properties of trabecular bone (porosity and 

density). It is related to the fundamental 

properties of these bones. By observing the 

results shown in Table 3, we notice that the 

longitudinal speed varies from one sample to 

another. This variation is essentially due to the 

porosity. The analysis of our results shows that 

the sample with a low porosity has the highest 

longitudinal velocity. This finding is in good 

agreement with the behavior of many other 

porous materials [29]. This study confirms the 

sensitivity of the ultrasonic propagation velocity 

with variation in the bone porosity. 

 
 

Table 3. Experimental values of densities, acoustic wave velocities and elastic constants of porous bones 

saturated by water. 

Porosity(%) 𝐕𝐥(m/s) ρ(Kg/𝐦𝟑) 𝐕𝐭(m/s) E(GPa) G(GPa) ν Relative 

Error 

50.8 2662 1472  974.9776 3.9808 1.3989 0.4225 9.0% 

53.6 2522 1445  857.5104 2.9887 1.0420 0.4347 9.3% 

59.8 2342 1385  706.4812 1.9401 0.6686 0.4499 7.3% 

60.4 2285 1380  658.6552 1.6613 0.5704 0.4546 6.0% 

70.1 2173 1287  564.6815 1.1879 0.4056 0.4638 8.3% 

72.0 2151 1250  546.2224 1.1065 0.3776 0.4655 7.0% 

73.2 2069 1257  477.4202 0.8368 0.2859 0.4721 7.0% 

 



L. Mountassir et al, Journal of Advanced Materials and Processing, Vol. 5, No. 2, 2017, 61-74 72 

 

 

 
Fig. 9. Correlation between theoretical and experimental values of: a: longitudinal velocity, b: transversal 

velocity, c: density, d: Young modulus, e: Poisson ratio, f: transversal modulus.

The experimental data and theoretical 

predictions are similar, allowing us to conclude 

that the theory of propagation of Lamb waves is 

well suited to the description of the spread of the 

ultrasonic wave in the cancellous bone [30]. It 

also proves the validity Schoch model for the 

description of the wave Lamb propagation in 

cancellous bone. 

 

3-3- Comparison between the theoretical 

values and the experimental values 

 We assume that these results may 

provide a reliable method to obtain a rapid 

characterization of bones; these results are also 

compatible with those found in the literature [9]. 

We found an excellent linear correlation 

between the porosity and in all other properties 

of the bone sample studied. Comparison of our 

theoretical results with those achieved 

experimentally demonstrates a good agreement, 

which constitutes a first step in validating our 

calculation program. The prediction appearance 

evaluated by using the following performance 

measures the correlation coefficient R. The 

corresponding definitions are given as follows 

[31]: 

𝑅𝑐 =
∑ (𝐴𝑖 − �̅�)(𝑃𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝐴𝑖 − �̅�)2 ∑ (𝑃𝑖 − �̅�)2𝑛
𝑖=1

𝑛
𝑖=1

 
 

(21) 

 where A is the theoretical value, P is the 

experimental value, �̅� is the mean of the 

theoretical value, �̅� is the mean of the 

experimental, and n is the total number of data.  

Fig .9 shows the correlation between theoretical 

and experimental values of: longitudinal 

velocity (Fig 9-a), transversal velocity (Fig 9-b), 

density (Fig 9-c), Young modulus (Fig 9-d), 

Poisson ratio (Fig 9-e) and transversal modulus 

(Fig 9-f). The best results are obtained when the 

points are illustrated at the straight line. This 

means that the value of the correlation 

coefficient R is 1. The values of the correlation 

coefficient R between theoretical and 

experimental values are: R=0.99 for density, 

R=0.97 for transversal modulus, R=0.96 for 

longitudinal velocity, transversal velocity and 

Poisson ratio, and R=0.94 for Young modulus. 

Those values show that there is a positive and 
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almost perfect agreement between theoretical 

and experimental values of acoustics and 

elastics parameters. 

 

4- Conclusion 
In this article, two complementary approaches to 

ultrasonic characterization of porous bones were 

proposed and realized. At first, we used the 

Schoch theory as a model of the Lamb wave 

propagation in porous bone. Second, we 

evaluated an experimental study of the porous 

bone elastic proprieties from the wave 

longitudinal transmitted in the bovine 

cancellous bone sample. Experimental 

validation of this model using waves transmitted 

through samples of bovine cancellous bone was 

performed and an excellent agreement was 

found between theory and experiment. So, from 

these mechanical properties of cancellous bone 

we can know that is normal or osteoporotic 

bone.  

 We conclude that the Schoch theory is 

adequate for the propagation of Lamb wave in 

cancellous bone to the effect that further review 

is necessary to explain all the observed 

phenomena. We also think that our research 

could have interesting applications in the 

diagnosis of other diseases or traumas of bones 

and even other tissues and vital organs, and in 

the characterization of non-living materials 

/structures, natural or fabricated. 
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