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Abstract 

One of the most important issues in financial markets is the effect of portfolio diversification to reduce the risk. Portfolio 

diversification has been discussed in many researches and has been proven in different portfolios, including stock portfolios, currency 

portfolios, etc. In this paper, we are going to investigate the impact of diversification on a credit portfolio risk related to companies 

listed on Tehran Stock Exchange. To calculate the risk of the companies mentioned, we use structural models of credit risk. In fact, 

the most important factor for assessing the risks of financial markets is to estimate the loss distribution. On the other hand, the 

estimation of loss distribution is highly depended on the characteristics of the distribution parameters. One of the characteristics that 

can affect the loss distribution is non-stationary time series of asset returns. In this research, the data of the adjusted prices of the 

companies in Tehran Stock Exchange is used during 2011- 2019. The loss distribution of credit portfolio is obtained through Merton's 

model with regard to non-stationary time series of asset returns and the changes of the asset returns’ covariance matrix during the 

period of 2011-2019. The risk used in this paper is the value at risk. According to the results of the model, at lower confidence levels 

such as 99% and 99.5%, there is not enough evidence for the impact of diversification in reducing the risk, but at the confidence level 

of 99.9% and for the type error of 5%, it can be said that diversification has a significant effect on reducing risk. 

 

Keywords: Loss Distribution, Random Matrix, Non-stationary, Value at Risk. 

 

1. Introduction 
   In recent decades, risk management has become a big 

challenge for the banks and financial institutions. Due to 

the occurrence of many crises and the inability of the banks 

to deal with these crises, the need to create appropriate 

approach for risk management has become inevitable. 

Failure to pay attention to this issue can lead to irreparable 

consequences and even bankrupt of the banks or financial 

institutions. The most important risk that banks face is 

credit risk. Credit risk is the probability of the loss that may 

occur by the failure of any party of a contract to repay a 

loan or to fulfill contractual obligations.  

Banks should have a correct assessment of credit risk. 

Credit risk assessment at an individual level evaluates the 

ability of customers to repay loans, but at the portfolio 

level, this means evaluating possible losses that a bank may 

incur in the future. The correct assessment of credit risk 

allows banks to optimize their credit portfolios in time. 

At the credit portfolio level, there are several methods for 

credit risk management. However, the main problem in all 
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methods are the correct estimation of the loss distribution 

of large credit portfolios. The loss distribution of credit risk 

has a characteristic shape due to the fundamental properties 

of the credit contracts. One of the simplest credit contracts 

is zero coupon bonds. In this contract, the investor buys the 

bonds from the obligor at the price discounted and a given 

maturity. The obligor must pay back the nominal value of 

the bonds to the investor.  

In this type of contracts, the nominal value is higher than 

the discounted price. Therefore, the difference is 

considered as the investor's profit margin. This process will 

be true if that the obligor is able to completely pay back the 

nominal value of the bonds and does not default. In 

practice, the investor faces the risk of default depending on 

the obligor's credit rating. In addition, the maximum profit 

that the investor can achieve is the difference between the 

nominal value and the discounted value of the bonds, but 

the maximum loss is losing the total amount paid to the 

obligor. 
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Typically, the investor (bank) lends money to many 

institutions and has a portfolio consisting of a large number 

of credit contracts. Many borrowers will be able to repay 

their installments, and only a small percentage will default. 

The loss caused by this low percentage is normal and is 

compensated by taking risk premium. The real risk lies in 

the heavy tail of the loss distribution. The rare events that 

cause large losses, as seen in the 2008 crisis, can affect all 

investors (banks). The accurate assessment of loss 

distribution is necessary to determine the risk 

compensation or to estimate the capital requirements of 

banks at the time of default (the capital charge to cover all 

types of risks). Financial institutions often claim that 

diversification reduces the risk of a portfolio. In fact, 

reducing risk by diversification is true for portfolios that 

include stocks, but the accuracy of this information for the 

portfolio of credit contracts is doubtful. The main reason 

for such an event is the asymmetry of the loss distribution 

for the credit portfolio, while in the stock portfolio; the loss 

distribution can be symmetrical. 

In the credit portfolio, if default does not occur, the bank's 

maximum profit is the interest and risk compensation. 

However, if the customer defaults, the biggest possible loss 

of the bank is the complete loss of the money lent. 

Therefore, it is very important to consider the fluctuation 

of the correlations to evaluate the tail effects of the loss 

distribution. Even if there is weak correlation in the credit 

portfolio, diversification may not reduce the risk. This has 

been shown in several studies such as (Glasserman & Ruiz-

Mata, 2006) and (Schönbucher, 2001) for first passage 

models and (Chetalova et al., 2015), (Münnix et al., 2012) 

and (Schmitt, 2014) for Merton model. 

The main purpose of this paper is to investigate the impact 

of diversification in reducing credit portfolio risk. 

Therefore, we try to evaluate the risk of a credit portfolio 

consisting of the companies listed. For this purpose, credit 

risk structural models are used and Merton's model is 

expanded considering the fluctuations of correlations 

between asset values.  

Because nonstationary prevails in most financial markets, 

no research estimated the credit loss distribution function 

in the bank's credit portfolio. In the model presented in this 

research, the credit risk loss distribution function is used to 

provide a method for the credit risk assessment of a 

portfolio consisting of listed companies is presented with 

the structural branches of credit risk considered as a new 

method in risk measurement in Iran. 

However, there are some weaknesses in Merton model. For 

example, it assumes the fixed covariance matrix for asset 

variables during the time horizon. This assumption cannot 

be valid, especially during crises. To overcome this issue 

and to have a better credit risk estimation, in this paper, we 

use random matrix theory to take fluctuations of the 

correlations matrix into account. 

First, we review a correlation averaged multivariate 

distribution (Chetalova, 2015), (Schmitt et al. 2013) which 

can describe the multivariate returns and consider the 

fluctuation correlation matrix. In order to complete the 

analysis, a covariance matrix with average correlation 

structure is introduced, which limits the the space to two 

parameters. These parameters are “an average correlation 

between asset values” and “a measure for the strength of 

the fluctuations”. Then, we use this distribution to describe 

the asset value of the obligor at maturity to model credit 

risk. 

 

2. Review of Literature  
Münnix et al., (2012), conducted an article discussing the 

financial markets state. They concluded that a correct 

comprehension of complex systems had become a 

fundamental issue, because they exist in almost all 

domains. They considered the financial markets as a 

complex system and analyzed the financial market data, 

especially the daily data of Standard and Poor's index over 

19 years. In addition, they concluded that considering the 

correlation structure characteristics are crucial. Non-

stationary time series is one of the features studied in this 

research and is usually one of the inherent assumptions of 

the models. 

Münnix et al., (2014), in the research titled “A random 

matrix approach to credit risk", integrated the statistical 

features of credit risk structural methods with an ensemble 

of random matrices and estimated the credit risk of a 

portfolio consisting of the companies listed. They 

explained that if the correlation between asset returns is not 

zero. Even if the average correlation is zero, the presence 

of weak correlation would severely limit the impact of 

diversification. 

Schmitt et al., (2013), conducted a study entitled “Non-

stationarity in financial time series: Generic features and 

tail behavior”. This research shows that financial markets 

are an example of non-stationary systems, and sample 

parameters such as variance and covariance are highly 

depended on the time window where the parameters are 

estimated. This factor mentions the severe limitations of 

standard approaches in statistical techniques. They also 

discussed that the time series of asset value is non-

stationary and covariance matrix Σ changes during time. 

This fact can affect the asset distribution in the structural 

models of credit risk. Therefore, it seems significantly 

effective to choose a distribution for the asset value 

consistent with the experimental data and represent the 

data features. 

Gurny et al., (2013), discussed the framework of Merton's 

model. They first examined the assumptions of Merton’s 

model and then introduced a new method using the 

alternative process to overcome the weaknesses of that 

model. In the new method, a non-Gaussian process was 

used. They compared the new model and the classic KMV 

and Merton models and concluded that, in general, Merton 

model underestimated the probability of default compared 

to the newly introduced model. 

Some financial studies have investigated the existence of 

correlation in portfolios and the role of diversification in 

reducing risk. For example, for the first passage models, 

Schönbucher (2001) and Glasserman & Ruiz-Mata (2006) 

and for Merton model, Münnix et al. (2012) and  Chetalova 

et al. (2015) and Schmitt, (2014) showed that if there is a 

weak positive correlation, diversification will not be 

effective in reducing risk (Mühlbacher & Guhr, 2018).
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In structural credit risk models, default and loss given 

default are both derived from the asset value at maturity. 

Therefore, the distribution describing the asset values has 

to be chosen carefully. For this purpose, Schmitt & 

Schäfer, (2015) introduced a distribution for asset values 

using the random matrix approach to take into account the 

non-stationary asset correlations. They considered the 

average correlation parameter homogeneously and as a 

result reduced it to two parameters including “average 

correlation coefficient " and " strength of the fluctuations. 

They concluded that, under the mentioned approach asset, 

value distribution can describe well the experimental data. 

Therefore, in this way, they obtained the average portfolio 

loss distribution and calculated the value at risk (VaR) and 

the expected tail loss (ETL) using Monte Carlo simulation 

approach (Schmitt & Chetalova, 2015).  

Sicking et al., (2018), expanded the above topic and 

considered the problem of Concurrent credit portfolio 

losses where two non-overlapping credit portfolios are 

taken into account. They also discussed copulas of 

homogeneous portfolios. Sandoval & Franca (2012), 

Sicking et al. (2018) and Mühlbacher & Guhr, (2018) 

separately analyzed the correlation structure of the stock 

market and showed that financial market correlation can 

change during times of crisis partly.  

Omar and Prasanna, (2021) studied some weaknesses of 

Merton model and extended the application of Merton 

model in six emerging Asian markets to estimate corporate 

default risk. 

Shi et al., (2022), used Machine learning-driven to model 

credit risk. They systematically reviewed a series of major 

research contributions (76 papers) over the past eight years 

using statistical, machine learning and deep learning 

techniques to address the problems of credit risk. 

Specifically, they proposed a novel classification 

methodology for ML-driven credit risk algorithms and 

their performance ranking using public datasets. 

in Iran, one of the leading works in the field of using the 

KMV model in credit risk modeling is Falah Shams' Ph.D. 

dissertation and the results were published as an article 

titled "Credit risk measurement models in banks and credit 

institutions" in 2014. In this research, he explained the 

structural models of credit risk and applied these methods 

to Iran's banking system (Falah Shams, 2014). 

Khansari & Shams, (2010), conducted a study entitled 

"Assessment of KMV structural model application in 

predicting the default of the companies listed on Tehran 

Stock Exchange" to predict the bankruptcy of the clients in 

Iranian bank using the structural model features and to 

assess the accuracy of the relevant model. The data of their 

research included a sample of 40 publicly traded 

companies receiving loans from Iranian banks during 

2007-2008. The findings represent that KMV model is 

capable of predicting default and can distinguish between 

good and bad customers. 

Falahpour & Tadi, (2016), have investigated the 

relationship between capital structure components and the 

probability of default of companies listed on the Tehran 

Stock Exchange in 2013. They selected a sample of 40 

companies and used the market data as well as the capital 

structure of these companies for the purpose of analysis. 

In another research presented by Shams Qarneh & Janati, 

(2011), titled as "Presenting a dynamic model to predict the 

default rate of companies listed on the Iranian Stock 

Exchange (case study: metal products manufacturing 

industry)", the credit risk of selected companies using 

Merton's dynamic model was evaluated. In this research, 4 

companies from the basic metal manufacturing industry 

were selected during 2001-2011 and their status was 

examined in terms of the probability of bankruptcy and 

default. 

Falah Shams, (2014), measured the default risk for a 

sample of 60 companies listed on Tehran Stock Exchange 

during 2010- 2013 using Black-Scholes-Merton model and 

analyzed the relationship between corporate governance 

and default risk in the mentioned companies. They found 

that among the factors of corporate governance, only the 

factors related to public and transparent disclosure, at the 

95% confidence level; have a significant relationship with 

the default risk of companies. 

In their research, KMV model was firstly used to estimate 

the default probability of companies and then the panel 

data method was used to analyze the relationship between 

capital structure of companies including the variables of 

company size, asset book value ratio, and leverage, 

volatility of asset returns, stock return and sensitivity 

coefficient and their probability of default. The results 

indicate that there is a significant relationship between the 

capital structure of companies and their default probability 

(Azaripanah & Falah Shams, 2013). 

Falah Shams et al., (2017), presented an article titled 

"Measuring default risk using Black-Scholz-Merton model 

and testing its relationship with corporate governance 

factors" and predicted default risk (probability of default) 

in selected Iranian listed companies. By removing the 

simple assumptions of Merton model, they calculated the 

annual default probability for the selected companies 

during 2010-2011 for both models. Finally, they concluded 

that there is a significant difference between two models in 

assessing the probability of default. 

Considering that the assessment of the credit loss 

distribution function in the bank's credit portfolio has been 

discussed, it was not found and therefore it is considered 

that this paper is a new method of measuring risk in Iran 

and the theory of knowledge raises a new issue in credit 

risk management in Iran. 

Most of the researches carried out regarding Merton 

models or structural models including KMV to investigate 

the default of companies or the relationship between the 

defaults and other variables. To the best of our knowledge, 

no research has been done in the area of using random 

matrix model to consider non-stationary of the time series 

and estimating risk measures in Iran. 

 

3. Material and methods 
The purpose of this research is to investigate the impact of 

diversification on the risk of a credit portfolio consisting 

publicly traded companies. In this regard, the value at risk 

(VaR) is considered as an index of credit portfolio risk 

measurement. We  want  to  evaluate  how  much  the  risk
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Table1. Cramer-Von Mises Test of Goodness-of-Fit 

Parameter Cramer-Von Mises Test statistics p-value 

3 0.070248 0.75 

decrease as the number of borrower’s increase. However, 

to calculate the value at risk, the loss distribution of credit 

risk must be estimated. To obtain the loss distribution, we 

use Merton model, considering the non-stationary of asset 

returns and the covariance matrix changes. Merton model 

assumes that the total value of a company, i.e. 𝑉𝑘(𝑡) at time 

t can be described by a geometric Brownian motion: 

 

𝑑Vk(t) = 𝜇𝑘Vk(t)dt + 𝜎𝑘Vk (t)dW(t)        (1) 

 

Where, 𝑑𝑊(𝑡) is a Wiener process and𝑉𝑘 (0) > 0. 𝜇𝑘 is 

the drift and 𝜎𝑘 is the volatility of the asset value for 

company k. If at the maturity of the bonds, T, the value of 

the company's assets is less than the nominal valueVk(t) <
Fk , the borrower will not be able to fulfill their obligation 

and will not be able to pay back their debt. Therefore, 

default will occur. In this case, the investor has the right to 

take over all assets of the company and liquidate them. If 

the face value is smaller than the asset value, the company 

can pay back its obligations and no default or loss occurs.  

As mentioned above, in case of the default of any 

companies, the amount of the bank's loss is equal to[𝐹 −
𝑉(𝑇)]. Let us assume that we have a portfolio of credit 

contracts consisting of K companies. To extend Merton 

model, the normalized loss for the k-th contract is as 

follows: 

𝐿𝑘 =
𝐹𝑘 − 𝑉𝑘(𝑇)

𝐹𝑘

Θ(𝐹𝑘 − 𝑉𝑘(𝑇))          (2)         

Where, Θ(𝑥)  denotes the Heaviside step function: 

Θ(𝑥) = {
0      𝑥 < 0
1       𝑥 ≥ 0

                       (3) 

 

Heaviside step function Θ(𝐹𝑘 − 𝑉𝑘(𝑇)) is unity only if the 

face value 𝐹𝑘 is larger than the remaining asset value of the 

obligor 𝑉𝑘(𝑇) otherwise zero. This construction guarantees  

 

 

that the loss Lk is always equal or greater than zero and 

equal or lesser than one. 

The sum of the individual losses𝐿𝑘, which are weighted by 

their fraction 𝐹𝑘 of the portfolio, gives the total loss of the 

portfolio: 

 

𝐿 = ∑ 𝑓𝑘𝐿𝑘      𝐾
𝑘=1       𝑓𝑘 =

𝐹𝑘

∑ 𝐹𝑘
𝐾
𝑘=1

      (4)              

 

To calculate the loss distribution we need to integrate over 

the distribution of asset values 𝑔(𝑉|Σ) at maturity time T 

with V =  (V1(T), . . . , VK(T)) and filter for a given loss L 

using the conditions of equation (4): 

 

 

𝑃(𝐿) = ∫ 𝑑[𝑉]𝑔(𝑉|Σ)𝛿 (𝐿 − ∑ 𝑓𝑘𝐿𝑘  

𝐾

𝑘=1

).        (5) 
 

[0،∞)𝑘

 

 

 

However, the time series of the asset value is non-

stationary and covariance matrix Σ changes during time. 

This fact can affect the asset distribution. To take into 

account non-stationarity and covariance matrices changes, 

we use random matrix approach and replace the covariance 

matrix with a random matrix: 

 

Σ 𝑡  →   𝜎𝑊𝑊′σ،      (6) 

 

Figure 1. Theoretical and the Empirical Distributions for the Normalized Monthly Returns 
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Table2. Parameter values based on maturity time 

average drift 𝜇 average volatility 𝜎 average correlation levels (c) N Maturity Time 

0.035 0.076 0.093 3 Monthly (T=20) 

0.478 0.408 0.277 3 Yearly (T=1year) 

Table3. Regression model for value at risk measure at 99% confidence level 

Parameter Estimate Std. Error t-value p-value 

a 0.063783 0.00734 8.69 0.0000 

b -0.00076 0.000408 -1.871 0.0983 

Table4. Regression model for value at risk measure at 99.5% confidence level 

Parameter Estimate Std. Error t-value p-value 

a 0.075324 0.008582 8.777 0.0000 

b -0.00095 0.000414 -2.292 0.0511 

Where, the element of a 𝐾 × 𝑁 random matrix 𝑊 is drawn 

from a multivariate normal distribution and then, 𝑊𝑊′ 

follows Wishart distribution:

 �̃�((𝑊𝑊′|𝐶. 𝑁) =

√
𝑁

2

𝐾𝑁
√𝑑𝑒𝑡𝑊𝑊′

𝑁−𝐾−1

Γ𝐾(
𝑁

2
)√𝑑𝑒𝑡𝐶

𝑁 exp (−
𝑁

2
𝑡𝑟𝑊′𝐶−1𝑊).     (7)

Figure2. Test Results for Different Values of N 

 
 

Figure3. Average loss distribution (T = 20 trading days) for different portfolio sizes including 10, 100 and 

∞ in logarithmic scale 
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Table5. Regression model for value at risk measure at 99.9% confidence level 

Parameter Estimate Std. Error t-value p-value 

a 0.096113 0.009867 9.741 0.69% 

b -0.00115 0.000384 -2.989 0.0174 

 

With the multivariate Gamma function: 

 

Γ𝐾(𝛼) =  𝜋
𝐾(𝐾−1)

4 ∏ Γ (𝛼 +
(1 − 𝑘)

2
)

𝐾

𝑘=1

              (8) 

 

This ensemble of Wishart correlation matrix fluctuates 

around the average correlation matrix C. The variance of 

𝑊𝑊′ is: 

𝑣𝑎𝑟(𝑊𝑊′)𝑘𝑙 =
𝐶𝑘𝑙

2 + 1

𝑁
.                                     (9) 

 

Where, 𝐶 the average correlation matrix and N is shows the 

strength of the fluctuations. Smaller N causes more 

fluctuations in covariance matrix and larger N can lead to 

stationary in covariance matrix. (Schmitt et al. 2013), 

showed that multivariate Gaussian distribution is a good 

approximation for returns distribution if the covariance 

matrix is fixed. So following the structure of random 

matrix distribution (7) and returns distribution, one can 

construct a correlation-averaged multivariate distribution 

taking into account the fluctuations of correlations: 

 

𝑔(𝑟|Σ0. 𝑁)

=
1

2
𝑁

2+1Γ (
𝑁

2
) √det (2

𝜋Σ0

𝑁
)

𝒦𝐾−𝑁

2

(√𝑁𝑟′Σ0𝑟)

√𝑁𝑟′Σ0𝑟
𝐾−𝑁

2

.         (10) 

 

Where, 𝒦𝜈  is the modified Bessel function of the second  

 

 

 

kind of order𝜈. After performing a change of variable and 

using Ito’ lemma: 

 

𝑟𝑘 → ln (
𝑉𝑘(𝑇)

𝑉0

) − (𝜇𝑘 −
𝜌𝑘

2

2
)𝑇.                (11)     

 

Where 𝜇 and 𝜌 are asset value drift and volatility 

respectively (Mühlbacher & Guhr, 2018).  

 

Which, 𝑚𝑗𝑘 is jth moment.  

To reduce parameters space, we use a correlation matrix 

with a simplified structure, i.e., homogeneous correlations 

between assets. We construct this matrix so that all off-

diagonal elements have a value of 𝐶𝑘≠𝑙 = 𝑐 

This construction has two advantages. We can simplify the 

parameter space of the correlation matrix to only one 

parameter and it will allow us to make analytical progress. 

Following Mühlbacher & Guhr, (2018), now we can 

achieve the portfolio loss distribution, which takes into 

account the fluctuating correlation: 

〈𝑝〉(𝐿|𝑐. 𝑁)

=
1

√2 𝜋2
𝑁

2⁄ Γ(𝑁
2⁄ )

∫ 𝑑𝓏 𝓏
𝑁

2⁄ −1𝑒−𝑧
2⁄ √

𝑁

2 𝜋

∞

0

× ∫

𝑑𝑢 exp (−
𝑁

2
𝑢2)

1

√𝑀2(𝓏. 𝑢)
exp (−

(𝐿 − 𝑀1(𝓏. 𝑢))2

2𝑀2(𝓏. 𝑢)

+∞

−∞

).    (12) 

 

 
 

Figure4. Average loss distribution (T = 2020 trading days) for different portfolio sizes including 10, 

100 and   on a linear scale 
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Where, 

𝑀1(𝓏. 𝑢) = ∑ 𝑓𝑘𝑚1 𝑘 (𝓏. 𝑢).           (13)

𝐾

𝑘=1

 

𝑀2(𝓏. 𝑢) = ∑ 𝑓𝑘
2(𝑚2𝑘(𝓏. 𝑢) − 𝑚1 𝑘

2 (𝓏. 𝑢)

𝐾

𝑘=1

).       (14) 

 

In order to achieve an analytical progress and comparative 

result, a homogeneous portfolio is used. For a 

homogeneous portfolio, all contracts have the same face 

value𝐹𝑘 = 𝐹, variance  𝜎𝑘 = 𝜎 , drift 𝜇𝑘 = 𝜇  and start 

asset value𝑉𝑘0 = 𝑉0. Then, the k-dependence is dropped 

from the average loss distribution. This greatly simplifies 

the moment functions (13) and (14), which makes the 

numerical evaluation of the average loss distribution 

substantially faster (Schmitt & Chetalova, 2015). The j-th 

moment is: 

𝑚𝑗𝑘(𝓏،𝑢)

=
√𝑁

𝜌𝑘√2 𝜋𝑇(1 − 𝑐)
∫ 𝑑�̂�𝑘(1

�̂�𝑘

−∞

−
𝑉𝑘0

𝐹𝑘

exp(√𝓏�̂�𝑘 + (𝜇𝑘 − 𝜌𝑘
2)𝑇))𝑗  

× exp (−
(�̂�𝑘 + √𝑐𝑇𝑢𝜌𝑘)

2

2 𝑇(1 − 𝑐) 𝜌𝑘
2

𝑁
⁄

)             (15)  

 

With the upper limit: 

 

�̂�𝑘 =
ln (

𝑉(𝑇)

𝑉𝑘0
) − (𝜇 − 𝜌2)𝑇

√𝓏
 

�̂�𝑘 =
1

√𝓏
(ln

𝐹𝑘

𝑉𝑘0

− (𝜇𝑘 − 𝜌𝑘
2)𝑇)    (16) 

 

Due to the normalization of the weights, the portfolio 

weights are simply 𝑓𝑘 =
1

𝐾
 and all credit contracts have the 

same weight (Schmitt & Chetalova, 2015).  Therefor the 

functions 𝑀1(𝑧, 𝑢) and 𝑀2(𝑧, 𝑢) will be simplified to: 

𝑀1(𝓏،𝑢) = 𝑚1(𝓏،𝑢) 

𝑀2(𝓏،𝑢) =
1

𝐾
(𝑚2(𝓏،𝑢) − 𝑚1

2(𝓏،𝑢))          (17) 

 

4. Results  
The data used in this paper are the adjusted returns of all 

companies listed on Stock Exchange during 2010-2019. 

The portfolio is comprised only of stocks, which were 

continuously traded or not stopped trading for more than 

20 days per year. For some stocks on some days, there is 

no price, so we simulate them by Monte Carlo simulation 

method. 

As mentioned before, we are examining the impact of 

diversification on portfolio risk. For this purpose, we use a 

credit portfolio consisting of all companies listed, and it is 

assumed that all listed companies can receive loans from 

banks. The information related to the daily-adjusted prices 

of listed companies is extracted from the website of Tehran 

Stock Exchange (TSE). The basic idea is that the asset 

value Vk(t) of the company k is the sum of time-

independent liabilities Fk and equity Ek(t) i.e.(𝑉𝑘 = 𝐹𝑘 +
𝐸𝑘). According to Merton model 𝑉𝑘 is a stochastic process 

that represents the unobservable assets value. Therefore, 

we recall the definition of the return as bellow: 

 

𝑟𝑘 =
𝑉𝑘(𝑡 + Δ𝑡) − 𝑉𝑘(𝑡)

𝑉𝑘(𝑡)
. 

For the k-th asset and Δ𝑡 is time to maturity or one year. 

All parameters defined above can be directly calculated 

from the data except N. The parameter N is determined by 

fitting data to formula (10) and confirming by the Crammer 

von Mises test. As first step, we examine the distribution 

of data. Using a least squares fit, N will be around 3. The 

theoretical and the empirical distributions for the 

normalized monthly returns are shown in figure 1. 

In figure 1, the empirical distribution is shown in solid 

black line, while the theoretical result shown in dotted red 

line- both of them on a logarithmic scale. In addition, the 

small box is in linear scale. For monthly returns, the value 

around 3 is needed for the parameter N to describe the 

empirical data and the average correlation level is 𝑐 =
%11. We test the result for accuracy by using Crammer 

von Mises test. The result of the test is shown in table 1. 

 As it can be seen, the p-value is greater than 0.05, which 

means that the null hypothesis (N=3) is not rejected. In 

other words, the null hypothesis of no significant 

difference between the observed and the theoretical 

distribution is not rejected. Put differently, the observed 

values are completely consistent with the theoretical 

distribution. We test the other values of N and the result is 

provided in figure 2. 

Different values of N against Crammer von Mises statistics 

and Crammer von Mises p-values are shown in the left and 

right panel of the figure 2, respectively. Red marks indicate 

the best value.  Both figures verify that the best value of N 

for fitting the empirical data is around 3. 

In this section, the impact of portfolio diversification on the 

shape of average loss distribution based on homogeneous 

portfolio is investigated. Average loss distribution 

〈𝑝〉(𝐿|𝑐،𝑁)  is shown in the figures 3-6 taking into account 

the correlation fluctuations between asset values. We 

choose different values for the size of the portfolio 

including K=10, 100, ∞. 

The limit case 𝐾 →  ∞ is presented in order to examine the 

portfolio with infinite size K→∞ and it shows how much 

the risk is reduced if all the companies can receive 

loansfrom the same market. The remaining parameters are 

fixed at typical values obtained from empirical data We 

need to test the impact of diversification on the loss 

distribution. For this purpose, the same conditions should 

be considered for all companies. 
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Therefore, for the face  

𝑡 =  0 is 𝑉0 =  100. 

 

Average loss distribution parameters are presented for 

T=20 trading days and T=1 year in (Table 2). Two figures 

are drawn for each time horizon, i.e., logarithmic and linear 

scales. Based on the parameters in table 2, the average loss 

distribution is as follows. The figure 3 and 4 are related to 

T=20 trading days (monthly), the figure 5 and 6 are related 

to one year. 

As it can be seen from the graphs, increasing the portfolio 

size- the number of companies in the credit portfolio- from 

10 to 100 contracts leads to a small decrease in risk. 

However, the advantages of diversification quickly vanish.  

Here, we achieve a quantitative understanding of why 

diversification cannot significantly reduce risk even, when 

there is weak correlation between the assets. In fact, the 

banks pay less attention to the correlation between 

customers when paying loans, and so, it may be difficult to 

reduce risk by diversifying the credit portfolio. Therefore, 

in the discussion of diversification of the credit portfolio, 

the bank should pay attention to the correlation of assets 

and to the costs incurred by the bank for this matter.  

To investigate more deeply the impact of increasing the 

portfolio size (K) or the impact of diversification on risk, 

for monthly return data, we calculate the value at risk 

(VaR) for different K. (Figure 7) shows the different values 

of VaR (vertical axis) against different values of K 

(horizontal axis) and confidence levels of 99%, 99.5% and 

99.9%. According to the figure 7, the increase of K 

decreases VaR. In other words, by increasing K, the risk 

decreases slowly, but it seems that the risk reduction is not 

very significant. Given that, visual analysis may be subject 

to errors.

Figure5. Average loss distribution (T= 1 year) for different portfolio sizes including 10, 100 and ∞ on a 

logarithmic scale 

Figure6. Average loss distribution (T = 1 year) for different portfolio sizes including 10, 100 and ∞ on a linear 

scale 
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Therefore, to check the significance of risk reduction an 

exponential regression model is fitted between VaR 

variable and K as follows The data results of this research 

showed that the nonstationary in the correlation time series 

has an effect on the distribution of losses of the bank's 

credit portfolio using structural methods, and failure to 

consider this important factor can cause an underestimation 

in the risk criteria.Many types of research have represented 

that the fluctuations of financial time series are highly 

unpredictable and change rapidly (Münnix MC, 2012), 

(Sandoval L. & Franca, 2012). Changes and nonstationary 

of fluctuations lead to fundamental challenges for 

estimating parameters including variance. Variance plays a 

very important role in financial modelling. In experimental 

research conducted by (Münnix et al., 2014), it was shown 

that the covariance matrix is able to describe the different 

situations of the financial markets (Song D-M, 2011). 
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