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Abstract. We define and study two completeness notions for saturated L-quasi-uniform limit spaces. The one, that
we term Lawvere completeness, is defined using the concept of promodule and lends a lax algebraic interpretation
of completeness also for saturated L-quasi-uniform limit spaces. The other, termed Cauchy completeness, is defined
using saturated Cauchy pair prefilters. We show that both concepts coincide with related notions in the case
of saturated L-quasi-uniform spaces and that also for saturated L-quasi-uniform limit spaces, both completeness
notions are equivalent.

AMS Subject Classification 2020: 54A20; 54A40; 54B30; 54E15
Keywords and Phrases: Saturated prefilter, Saturated L-quasi-uniform limit space, Completeness.

1 Introduction

Generalizing an approach in [2], completeness has recently been studied from a categorical point of view for
different kinds of many-valued quasi-uniform (convergence) spaces, [12, 13, 14]. This paper adds to these
investigations by considering many-valued quasi-uniform limit spaces based on saturated L-prefilters. These
spaces are a slight generalization of ⊤-uniform limit spaces [6, 7, 9] and of probabilistic quasi-uniform spaces
[5, 14]. We define a completeness notion using adjoint promodules, thus providing a categorical framework
for completeness. Also, we define completeness with the help of saturated pair L-prefilters. The main result
of the paper shows that both these approaches are equivalent.

The paper is organized as follows. In the second section we collect the necessary concepts about lattices,
L-subsets, saturated L-prefilters and prorelations. The third section studies saturated L-quasi-uniform limit
spaces and promodules. Sections 4 and 5 are devoted to the two concepts of completeness studied in this
paper. Finally, we draw some conclusions.

2 Preliminaries

In this paper, we will consider commutative and integral quantales L = (L,≤, ∗). Here, (L,≤) is a complete
lattice with distinct top and bottom elements ⊤ ̸= ⊥, (L, ∗) is a commutative semigroup with the top
element of L as the unit, that is, α ∗ ⊤ = α for all α ∈ L, and ∗ is distributive over arbitrary joins, that is,
(
∨

i∈J αi) ∗ β =
∨

i∈J(αi ∗ β) for all αi, β ∈ L, i ∈ J , see for example [4].
The implication in a quantale is defined by α → β =

∨
{δ ∈ L : δ ∗ α ≤ β} and characterized by

δ ≤ α→ β if and only if δ ∗ α ≤ β.
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Typical examples of commutative and integral quantales are L = ([0, 1],≤, ∗) with a left-continuous
t-norm on [0, 1] or Lawvere’s quantale L = ([0,∞],≥,+). Another example is given by the quantale of
distance distribution functions L = (∆+,≤, ∗), where ∆+ is the set of all distance distribution functions
φ : [0,∞] −→ [0, 1] which are left-continuous in the sense that φ(x) = supy<x φ(y) for all x ∈ [0,∞] and ∗ is
a sup-continuous triangle function, see [3, 11].

An L-subset of X is a mapping a : X −→ L and we denote the set of L-subsets of X by LX . For
A ⊆ X we define ⊤A ∈ LX by ⊤A(x) = ⊤ if x ∈ A and = ⊥ otherwise. The lattice operations are extended
pointwisely from L to LX . For a mapping φ : X −→ Y and a ∈ LX and b ∈ LY we define φ(a) ∈ LY by
φ(a)(y) =

∨
φ(x)=y a(x) for y ∈ Y and φ←(b) = b ◦ φ ∈ LX .

For L-subsets u ∈ LX×Y and v ∈ LY×Z , we define v ◦ u ∈ LX×Z by v ◦ u(x, z) =
∨

y∈Y u(x, y) ∗ v(y, z) for
all x ∈ X and z ∈ Z.

For a, b ∈ LX we denote the fuzzy inclusion order [a, b] =
∧

x∈X(a(x) → b(x)), [1]. The following properties
are well-known.

Lemma 2.1. Let a, a′, b, b′, c ∈ LX , d ∈ LY , u1, u2 ∈ LX×Y , , v1, v2 ∈ LY×Z and let φ : X −→ Y be a
mapping. Then

(i) a ≤ b if and only if [a, b] = ⊤;

(ii) a ≤ a′ implies [a′, b] ≤ [a, b] and b ≤ b′ implies [a, b] ≤ [a, b′];

(iii) [a, c] ∧ [b, c] = [a ∨ b, c];

(iv) [φ(a), d] = [a, φ←(d)];

(v) [u1, v1] ∗ [u2, v2] ≤ [u2 ◦ u1, v2 ◦ v1].

Definition 2.2. [5, 14] A subset F ⊆ LX is called a saturated L-prefilter (on X) if

(SP1) ⊤X ∈ F;

(SP2) a, b ∈ F implies a ∧ b ∈ F;

(SP3)
∨

b∈F[b, c] = ⊤ implies c ∈ F.

We denote the set of all saturated L-prefilters on X by FsatL (X) and we use the subsethood order on
FsatL (X).

The condition (SP3) implies a ≤ b, a ∈ F =⇒ b ∈ F. If additionally
∨

x∈X a(x) = ⊤ for all a ∈ F, then we
speak of a ⊤-filter [5, 14].

Example 2.3. For x ∈ X, [x] = {a ∈ LX : a(x) = ⊤} is a saturated L-prefilter, the saturated point L-
prefilter of x. We note that [x] is a ⊤-filter. More generally, for an L-set a ∈ LX , then [a] = {b ∈ LX : a ≤ b}
is a saturated L-prefilter and we have, in particular, [x] = [⊤{x}].

Definition 2.4. [5, 14] A subset B ⊆ LX is called a saturated L-prefilter base (on X) if

(SPB) a, b ∈ B implies
∨

c∈B[c, a ∧ b] = ⊤.

For a saturated L-prefilter base B, [B] = {a ∈ LX :
∨

b∈B[b, a] = ⊤} is the saturated L-prefilter generated
by B.

For a saturated L-prefilter F ∈ FsatL (X) and a mapping φ : X −→ Y , the set B = {φ(a) : a ∈ F} is a
saturated L-prefilter base on Y and we denote φ(F) the generated saturated L-prefilter on Y , the image of F
under φ, see e.g. [5].

A prorelation (from X to Y ) is a set of saturated L-prefilters Φ ⊆ FsatL (X × Y ) which satisfies the axioms
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(PR1) F ≤ G, F ∈ Φ implies G ∈ Φ;

(PR2) F,G ∈ Φ implies F ∧G ∈ Φ.

For F ∈ FsatL (X × Y ) the set [F] = {K ∈ FsatL (X × Y ) : F ≤ K} is a prorelation.

We consider now two prorelations Φ ⊆ FsatL (X × Y ) and Ψ ⊆ FsatL (Y × Z) and define

Ψ ◦ Φ = {H ∈ FsatL (X × Z) : ∃F ∈ Φ,G ∈ Ψ s.t. G ◦ F ≤ H}.

Here, it is defined G◦F = [{g◦f : g ∈ G, f ∈ F}] with g◦f(x, z) =
∨

y∈Y f(x, y)∗g(y, z) for all x ∈ X, z ∈ Z.
It is straightforward to show that Ψ ◦ Φ is a prorelation from X to Z.

We denote ∆X = {(x, x) : x ∈ X} ⊆ X × X. Then [⊤∆X
] ∈ FsatL (X × X) and hence [[⊤∆X

]] is a
prorelation from X to X.

Proposition 2.5. For a prorelation Φ ⊆ FsatL (X × Y ), we have Φ ◦ [[⊤∆X
]] = Φ and [[⊤∆Y

]] ◦ Φ = Φ.

Proof. Let H ∈ Φ ◦ [[⊤∆X
]]. Then there is F ∈ Φ such that F ◦ [⊤∆X

] ≤ H. For f ∈ F we have
f ◦ ⊤∆X

(x, y) =
∨

z∈X ⊤∆X
(x, z) ∗ f(z, y) = f(x, y) and hence we conclude that g ∈ F ◦ [⊤∆X

] if and
only if ⊤ =

∨
f∈F[f ◦ ⊤∆X

, g] =
∨

f∈F[f, g] if and only if g ∈ F, as F is a saturated L-prefilter. Hence,
F = F◦ [⊤∆X

] ≤ H and we have H ∈ Φ by (PR1). Conversely, for F ∈ Φ we have F = F◦ [⊤∆X
] ∈ Φ◦ [[⊤∆X

]].

The second equation can be shown in a similar way. □
For f ∈ LX×Y , g ∈ LY×Z and h ∈ LZ×U it is not difficult to show that h◦(g◦f) = (h◦g)◦f . From this we

conclude H◦ (G◦F) = (H◦G)◦F for saturated L-prefilters F ∈ FsatL (X×Y ),G ∈ FsatL (Y ×Z),H ∈ FsatL (Z×U)
and we obtain

Proposition 2.6. For prorelations Φ ⊆ FsatL (X × Y ),Ψ ∈ FsatL (Y × Z) and Θ ∈ FsatL (Z × U) we have
(Φ ◦Ψ) ◦Θ = Φ ◦ (Ψ ◦Θ).

Consider now a mapping φ : X −→ Y . We define the L-relation (and denote it again by φ), φ(x, y) = ⊤
if y = φ(x) and φ(x, y) = ⊥ otherwise. Similarly, the opposite L-relation φ◦ is defined by φ◦(y, x) = ⊤ if
y = φ(x) and φ◦(y, x) = ⊥ otherwise. Hence, φ ∈ LX×Y and φ◦ ∈ LY×X and therefore [φ] ∈ FsatL (X × Y )
and [φ◦] ∈ FsatL (Y ×X) and we obtain prorelations [[φ]] ⊆ FsatL (X × Y ) and [[φ◦]] ⊆ FsatL (Y ×X).

If φ : X −→ Y and ψ : Y −→ Z, then it is not difficult to show that [ψ ◦ φ] = [ψ] ◦ [φ]. From this we
immediately conclude [[ψ]] ◦ [[φ]] = [[ψ ◦ φ]].

Proposition 2.7. Let φ : X −→ Y . Then [[φ]] ◦ [[φ◦]] ⊆ [[⊤∆Y
]] and [[⊤∆X

]] ⊆ [[φ◦]] ◦ [[φ]].

Proof. We have, for y, y′ ∈ Y , φ◦φ◦(y, y′) =
∨

x∈X φ◦(y, x)∗φ(x, y′) = ⊤ if y′ = φ(x) = y for some x ∈ X and
= ⊥ otherwise. Hence φ◦φ◦ ≤ ⊤∆Y

which implies [⊤∆Y
] ≤ [φ◦φ◦] and hence [[φ]]◦[[φ◦]] = [[φ◦φ◦]] ⊆ [[⊤∆Y

]].

Similarly, we have, for x, x′ ∈ X that φ◦ ◦φ(x, x′) =
∨

y∈Y φ(x, y)∗φ◦(y, x′) = ⊤ if φ(x′) = φ(x) and = ⊥
otherwise. Hence ⊤∆X

≤ φ◦ ◦ φ, implying [⊤∆X
] ≥ [φ◦ ◦ φ]. From this we conclude [[⊤∆X

]] ⊆ [[φ◦ ◦ φ]] =
[[φ◦]] ◦ [[φ]]. □

Lemma 2.8. Let φ : X −→ Y and b ∈ LX×X . Then (φ× φ)←(b) = φ◦ ◦ b ◦ φ.

Proof. For all x, x′ ∈ X we have (φ◦◦b)◦φ(x, x′) =
∨

y∈Y (φ
◦◦b)(y, x′)∗φ(x, y) =

∨
y∈Y

∨
x:φ(x)=y φ

◦◦b(y, x′) =∨
x∈X φ◦ ◦ b(φ(x), x′) =

∨
y∈Y φ

◦(y, x′) ∗ b(φ(x), y) = b(φ(x), φ(x′)) = (φ× φ)←(b)(x, x′). □

Lemma 2.9. Let φ : X −→ Y and H ∈ FsatL (X ×X). Then we have, for b ∈ LX×Y , that b ∈ [φ] ◦H if, and
only if, φ◦ ◦ b ∈ H.
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Proof. We have with Lemma 2.1 (v), noting [φ◦, φ◦] = ⊤ = [φ,φ], for h ∈ H,

[φ ◦ h, b] ≤ [φ◦ ◦ φ ◦ h, φ◦ ◦ b] ≤ [h, φ◦ ◦ b] ≤ [φ ◦ h, φ ◦ φ◦ ◦ b] ≤ [φ ◦ h, b].

We conclude that b ∈ [φ] ◦H if, and only if, ⊤ =
∨

h∈H[φ ◦ h, b] =
∨

h∈H[h, φ
◦ ◦ b] if, and only if, φ◦ ◦ b ∈ H.

□

Lemma 2.10. Let φ : X −→ Y and H ∈ FsatL (X ×X). Then we have, for a ∈ LY×X , that a ∈ H ◦ [φ◦] if,
and only if, a ◦ φ ∈ H.

Proof. Similar as in the last proof, we have, for h ∈ H,

[h ◦ φ◦, a] ≤ [h ◦ φ◦ ◦ φ, a ◦ φ] ≤ [h, a ◦ φ] ≤ [h ◦ φ◦, a ◦ φ ◦ φ◦] ≤ [h ◦ φ◦, a].

We conclude that a ∈ G ◦ [φ◦] if, and only if, ⊤ =
∨

h∈H[h ◦ φ◦, a] =
∨

h∈H[h, a ◦ φ] if, and only if, a ◦ φ ∈ H.
□

Proposition 2.11. For H ∈ FsatL (X ×X) and φ : X −→ Y we have (φ× φ)(H) = [φ] ◦H ◦ [φ◦].

Proof. We have b ∈ [φ] ◦H ◦ [φ◦] if, and only if, φ◦ ◦ b ∈ H ◦ [φ◦] if, and only if, (φ×φ)←(b) = φ◦ ◦ b ◦φ ∈ H
if, and only if, b ∈ (φ× φ)(H). □

3 Saturated L-Quasi-Uniform Limit Spaces and Promodules

Definition 3.1. LetX be a set and let Λ ⊆ FsatL (X×X). The pair (X,Λ) is called a saturated L-quasi-uniform
limit space if

(SLUL1) [⊤∆X
] ∈ Λ;

(SLUL2) H ∈ Λ, H ≤ K implies K ∈ Λ;

(SLUL3) H,K ∈ Λ implies H ∧K ∈ Λ;

(SLUL4) H,K ∈ Λ implies H ◦K ∈ Λ.

A mapping φ : (X,Λ) −→ (X ′,Λ′) is called uniformly continuous if (φ× φ)(H) ∈ Λ′ whenever H ∈ Λ.

The axioms (SLUL2) and (SLUL3) show that Λ is a prorelation from X to X that satisfies, via (SLUL1)
and (SLUL4), the additional axioms

[[⊤∆X
]] ⊆ Λ and Λ ◦ Λ ⊆ Λ.

Uniform continuity of a mapping can be characterized as follows.

Proposition 3.2. Let (X,Λ) and (X ′,Λ′) be saturated L-quasi-uniform limit spaces and φ : X −→ X ′ be a
mapping. The following statements are equivalent.
(1) φ is uniformly continuous.
(2) [[φ]] ◦ Λ ⊆ Λ′ ◦ [[φ]].
(3) Λ ◦ [[φ◦]] ⊆ [[φ◦]] ◦ Λ′.
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Proof. We first show that (1) implies (2). Let φ be uniformly continuous and let K ∈ [[φ]] ◦ Λ. Then
K ≥ [φ] ◦ H for some H ∈ Λ and hence K ◦ [φ◦] ≥ [φ] ◦ H ◦ [φ◦] = (φ × φ)(H) ∈ Λ′. We conclude
K = K ◦ [⊤∆X

] ≥ K ◦ [φ◦] ◦ [φ] ∈ Λ′ ◦ [[φ]] and we have K ∈ Λ′ ◦ [[φ]].
Now we show that (2) implies (3).Let K ∈ Λ ◦ [[φ◦]]. Then K ≥ H ◦ [φ◦] for some H ∈ Λ. Hence

[φ] ◦ K ≥ [φ] ◦ H ◦ [φ◦] ∈ Λ′ ◦ [[φ]] ◦ [[φ◦]] ⊆ Λ′ ◦ [[⊤∆Y
]] = Λ′ and we have that [φ] ◦ K ∈ Λ′. We conclude

K = [⊤∆X
] ◦K ≥ [φ◦] ◦ [φ] ◦K ∈ [[φ◦]] ◦ Λ′ and we have K ∈ [[φ◦]] ◦ Λ′.

Finally we show that (3) implies (1). Let H ∈ Λ. Then (φ × φ)(H) = [φ] ◦ H ◦ [φ◦] ∈ [[φ]] ◦ Λ ◦ [[φ◦]] ⊆
[[φ]] ◦ [[φ◦]] ◦ Λ′ ⊆ [[⊤∆Y

]] ◦ Λ′ = Λ′ and φ is uniformly continuous. □

Example 3.3 ([13]). Let X be a set. A saturated L-prefilter U ∈ FsatL (X ×X) is called a saturated L-quasi-
uniformity if

(U0) for all x ∈ X and u ∈ U we have u(x, x) = ⊤;

(UC) for all u ∈ U we have
∨

v∈U [v ◦ v, u] = ⊤.

The pair (X,U) is the called a saturated L-quasi-uniform space. A mapping φ : (X,U) −→ (X ′,U ′)
between the saturated L-quasi-uniform spaces (X,U), (X ′,U ′) is called uniformly continuous if (φ×φ)←(v) ∈
U for all v ∈ U ′.

We note that the conditions (U0) and (UC) are equivalent to (U0’) U ≤ [⊤∆X
] and (UC’) U ≤ U ◦ U .

Uniform continuity of a mapping φ : (X,U) −→ (X ′,U ′) can equivalently be expressed by [φ] ◦ U ≥ U ′ ◦ [φ].
Wang and Yue [13] call a saturated L-quasi-uniform space a fuzzy quasi-uniform space. Also, they use as

order on the set of saturated L-prefilters the opposite order of the subsethood order.
For a saturated L-quasi-uniform space (X,U) then (X, [U ]) is a saturated L-quasi-uniform limit space

and a uniformly continuous mapping φ : (X,U) −→ (X ′,U ′) is also uniformly continuous as a mapping
φ : (X, [U ]) −→ (X ′, [U ′]).

Definition 3.4. Let (X,Λ) and (X ′,Λ′) be saturated L-quasi-uniform limit spaces. A prorelation from X to
X ′, Φ ⊆ FsatL (X ×X ′), is called a promodule (from (X,Λ) to (X ′,Λ′)) if Φ ◦ Λ ⊆ Φ and Λ′ ◦ Φ ⊆ Φ.

We note that for a promodule Φ = Φ ◦ [[⊤∆X
]] ⊆ Φ ◦ Λ and hence we even have Φ ◦ Λ = Φ. Similarly we

can see also that Λ′ ◦ Φ = Φ. Also, from (SLUL4) we see that Λ is a promodule from (X,Λ) to (X,Λ).

Example 3.5. Let φ : (X,Λ) −→ (X ′,Λ′) be uniformly continuous. Then φ∗ = Λ′ ◦ [[φ]] is a promodule
from (X,Λ) to (X ′,Λ′) and φ∗ = [[φ◦]] ◦Λ′ is a promodule from from (X ′,Λ′) to (X,Λ). It is easy to see that
φ∗ and φ

∗ are prorelations. Furthermore φ∗ ◦Λ = Λ′ ◦ [[φ]] ◦Λ ⊆ Λ′ ◦Λ′ ◦ [[φ]] ⊆ Λ′ ◦ [[φ]] = φ∗ and, similarly,
Λ′ ◦ [[φ∗]] = Λ′ ◦ Λ′ ◦ [[φ]] ⊆ Λ′ ◦ [[φ]] = φ∗. The proof that φ∗ is a promodule is similar and not shown.

Definition 3.6. Let (X,Λ) and (X ′,Λ′) be saturated L-quasi-uniform limit spaces, let Φ ⊆ FsatL (X,X ′) be a
promodule from (X,Λ) to (X ′,Λ′) and let Ψ ⊆ FsatL (X ′ ×X) be a promodule from from (X ′,Λ′) to (X,Λ).
Φ is called left-adjoint for Ψ (and Ψ is called right-adjoint for Φ) if Λ ⊆ Ψ ◦ Φ and Φ ◦Ψ ⊆ Λ′. In this case
we write Φ ⊣ Ψ.

Example 3.7. For a uniformly continuous mapping φ : (X,Λ) −→ (X ′,Λ′) we have φ∗ ⊣ φ∗. In fact, we
have Λ = Λ ◦ [[⊤∆X

]] = Λ ◦ [[φ◦]] ◦ [[φ]] ⊆ [[φ◦]] ◦ Λ′ ◦ [[φ]] = [[φ◦]] ◦ Λ′ ◦ Λ′ ◦ [[φ]] = φ∗ ◦ φ∗ and also
φ∗ ◦ φ∗ = Λ′ ◦ [[φ]] ◦ [[φ◦]] ◦ Λ′ ⊆ Λ′ ◦ [[⊤∆Y

]] ◦ Λ′ = Λ′ ◦ Λ′ = Λ′.

We note that for a promodule Ψ ⊆ FsatL (X ′ ×X) its left-adjoint Φ ⊆ FsatL (X,X ′) is unique. In fact, if we
have Φ1 ⊣ Ψ and Φ2 ⊣ Ψ, then Φ1 = Φ1 ◦Λ ⊆ Φ1 ◦ (Ψ ◦Ψ2) = (Φ1 ◦Ψ) ◦Φ2 ⊆ Λ′ ◦Φ2 = Φ2. Similarly we see
that Φ2 ⊆ Φ1 and hence Φ1 = Φ2. In the same way, also for a promodule Φ ⊆ FsatL (X,X ′) its right-adjoint
Ψ ⊆ FsatL (X ′ ×X) is unique.

The following lemma will come in handy later.
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Lemma 3.8. Let (X,Λ) and (X ′,Λ′) be saturated L-quasi-uniform limit spaces, let Φ,Φ′ ⊆ FsatL (X,X ′) be
promodules from (X,Λ) to (X ′,Λ′) and let Ψ,Ψ′ ⊆ FsatL (X ′×X) be promodules from from (X ′,Λ′) to (X,Λ).
If Φ′ ⊆ Φ and Ψ′ ⊆ Ψ, then Φ′ = Φ and Ψ′ = Ψ.

Proof. We have Φ′ = Λ′ ◦ Φ′ ⊇ (Φ ◦ Ψ) ◦ Φ′ ⊇ (Φ ◦ Ψ′) ◦ Φ′ = Φ ◦ (Ψ′ ◦ Φ′) ⊇ Φ ◦ Λ = Φ. Similarly we can
show Ψ ⊆ Ψ′. □

4 Lawvere Completeness of Saturated L-Quasi-Uniform Limit Spaces

We consider a one-point set 1 = {•} and the unique saturated L-quasi-uniform limit structure Π = [[⊤{(•,•)}]].
A mapping φ : 1 −→ X, φ(•) = x will be identified with x ∈ X and we shall write x : 1 −→ X for it. We note
that x : (1,Π) −→ (X,Λ) is uniformly continuous: For H ≥ [⊤{(•,•)}] we find (φ×φ)(H) ≥ (φ×φ)([⊤{(•,•)}]) =
[⊤{(φ(•),φ(•))}] = [⊤{(x,x)}] ≥ [⊤∆X

] ∈ Λ and hence (φ× φ)(H) ∈ Λ.

Definition 4.1. A saturated L-quasi-uniform limit space (X,Λ) is called Lawvere complete if for all promod-
ules Φ ⊆ FsatL (1×X) from (1,Π) to (X,Λ), Ψ ⊆ FsatL (X × 1) from (X,Λ) to (1,Π) with Φ ⊣ Ψ there is x ∈ X
such that Φ = x∗ and Ψ = x∗.

In the sequel, we want to identify X×1 and 1×X with X. This leads to some adaptation in the concepts
and definitions. For a mapping x : 1 −→ X we note that x(•, y) = ⊤ if and only if x = x(•) = y and
x(•, y) = ⊥ otherwise. Hence, x(•, y) = ⊤{x}(y) and we can write x∗ = Λ ◦ [[x]] with the saturated point
L-prefilter [x]. Similarly, x◦(y, •) = ⊤ if x = x(•) = y and x◦(y, •) = ⊥ otherwise, so that also x∗ = [[x]] ◦ Λ.

More generally, for F ∈ FsatL (X × 1) (or, similarly, for F ∈ FsatL (1×X)) we identify f ∈ F with an L-subset
of X (denoted again by f) via f(x) = f(x, •). In this sense, we define for H ∈ FsatL (X ×X) and F ∈ FsatL (X)

H ◦ F = [{h ◦ f : h ∈ H, f ∈ F}]

with h◦f(x) = h◦f(•, x) = h◦f(•, x) =
∨

y∈X f(•, y)∗h(y, x) =
∨

y∈X f(y)∗h(y, x) for all x ∈ X. Similarly,
we define

F ◦H = [{f ◦ h : f ∈ F, h ∈ H}]

with f ◦ h(x) = f ◦ h(x, •) =
∨

y∈X h(x, y) ∗ f(y, •) =
∨

y∈X h(x, y) ∗ f(y).
A promodule Φ ⊆ FsatL (1×X) from (1,Π) to (X,Λ) then satisfies the conditions Φ◦Π ⊆ Φ and Λ◦Φ ⊆ Φ.

We note that the first of these conditions is always satisfied: Φ ◦Π = Φ ◦ [[⊤{(•,•)}]] = Φ ◦ [[⊤∆1 ]] = Φ. Hence
it is sufficient to demand the condition Λ ◦Φ ⊆ Φ in this case. Identfying Φ ⊆ FsatL (1×X) with Φ ⊆ FsatL (X),
we call a prorelation Φ ⊆ FsatL (X) a left-Λ-promodule if Λ ◦ Φ ⊆ Φ. If the saturated L-quasi-uniform limit
space (X,Λ) is clear from the context, we simply speak of a left-promodule in this case.

Similarly, for a promodule Ψ ⊆ FsatL (X × 1) from (X,Λ) to (1,Π) we have the conditions Ψ ◦ Λ ⊆ Ψ and
Π ◦Ψ ⊆ Ψ and again the second of these conditions will be always satisfied. We therefore call a prorelation
Ψ ⊆ FsatL (X) a right-Λ-promodule if Ψ ◦ Λ ⊆ Ψ. Again, if the saturated L-quasi-uniform limit space (X,Λ) is
clear from the context, we simply speak of a right-promodule.

For adjoint promodules, we consider prorelations Φ,Ψ ⊆ FsatL (X) as promodules (from (1,Π) to (X,Λ) for
Φ and from (X,Λ) to (1,Π) for Ψ). Then, by definition, Φ ⊣ Ψ if and only if Φ ◦Ψ ⊆ Λ and Π ⊆ Ψ ◦Φ. The
first condition, Φ ◦Ψ ⊆ Λ, means that for all F ∈ Φ and all G ∈ Ψ we have F ◦G ∈ Λ. Now we note that for
f ∈ F and g ∈ G we have

f ◦ g(x, y) =
∨
z∈1

g(x, z) ∗ f(z, y) = f(•, y) ∗ g(x, •) = f(y) ∗ g(x) = g ⊗ f(x, y)

and hence, G⊗ F ∈ Λ for all F ∈ Φ and all G ∈ Ψ.
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The second condition, Π ⊆ Ψ ◦ Φ, means that there are F ∈ Φ and G ∈ Ψ such that G ◦ F ≤ [⊤{(•,•)}],
that is, that there are F ∈ Φ and G ∈ Ψ such that ⊤ = g ◦ f(•, •) =

∨
x∈X f(•, x) ∗ g(x, •) =

∨
x∈X f(x) ∗ g(x)

for all f ∈ F, g ∈ G. So we arrive at the following characterization.

Proposition 4.2. Let (X,Λ) be a saturated L-quasi-uniform limit space and let Φ ⊆ FsatL (X) be a left-
promodule and Ψ ⊆ FsatL (X) be a right-promodule. Then Φ is left-adjoint to Ψ, Φ ⊣ Ψ, if, and only if,
(1) G⊗ F ∈ Λ for all F ∈ Φ and all G ∈ Ψ; and
(2) there are F ∈ Φ and G ∈ Ψ such that for all f ∈ F and all g ∈ G we have

∨
x∈X f(x) ∗ g(x) = ⊤.

Proposition 4.3. The saturated L-quasi-uniform limit space (X,Λ) is Lawvere complete if, and only if, for
all left-promodules Φ ⊆ FsatL (X) and all right-promodules Ψ ⊆ FsatL (X) with Φ ⊣ Ψ there is x ∈ X such that
Φ = Λ ◦ [[x]] and Ψ = [[x]] ◦ Λ.

In [6, 13, 14], for a saturated L-quasi-uniform space (X,U) a prorelation is defined to be a saturated
prefilter H ∈ FsatL (X). A prorelation H is a left-U-promodule if H ≤ U ◦ H and a prorelation K is a right-U-
promodule if K ≤ K◦U . (Note that in [6] the composition was defined in a different order.) A left-U-promodule
H is left-adjoint to the right-U-promodule K, H ⊣ K, if U ≤ K⊗H and

∨
x∈X h(x) ∗ k(x) = ⊤ for all h ∈ H

and all k ∈ K. Then H is a left-U-promodule if and only if [H] is a left-[U ]-promodule. In fact, if H is
a left-U-promodule and F ∈ [U ] ◦ [H], then H ≤ U ◦ H ≤ F and hence, F ∈ [H]. Conversely, if [H] is a
left-[U ]-promodule, then U ◦ H ∈ [U ] ◦ [H] ⊆ [H], so that H ≤ U ◦ H. In a similar way, we see that K is a
right-U-promodule if and only if [K] is a right-[U ]-promodule.

Furthermore, it is not difficult to show that H ⊣ K (in (X,U)) if and only if [H] ⊣ [K] (in (X, [U ])).
A saturated L-quasi-uniform space (X,U) is called Lawvere complete [13] (see also [6]) if for all left-U -

promodules H and all right-U-promodules K with H ⊣ K there is x ∈ X such that H = U(x, ·) = [{u(x, ·) :
u ∈ U}] and K = U(·, x) = [{u(·, x) : u ∈ U}].

Proposition 4.4. A saturated L-quasi-uniform space (X,U) is Lawvere complete if, and only if, (X, [U ]) is
Lawvere complete.

Proof. Let first (X,U) be Lawvere complete and let Φ ⊣ Ψ. From Proposition 4.2 we see that there are
F ∈ Φ and G ∈ Ψ such that F ⊣ G. By Lawvere completeness, there is x ∈ X such that F = U(x, ·) and
G = U(·, x). For u ∈ LX×X we have u ◦ ⊤{x}(y) =

∨
z∈X ⊤{x}(z) ∗ u(z, y) = u(x, y) for all y ∈ X and hence

U ◦ [x] = U(x, ·). Similarly we can show [x] ◦ U = U(·, x). We conclude [F] = [U ] ◦ [[x]] and [G] = [[x]] ◦ [U ].
Clearly, we have [F] ⊣ [G] and [F] ⊆ Φ and [G] ⊆ Ψ. Lemma 3.8 implies Φ = [F] = [U ] ◦ [[x]] = x∗ and
Ψ = [G] = [[x]] ◦ [U ] = x∗ and hence (X, [U ]) is Lawvere complete.

For the converse, let (X, [U ]) be Lawvere complete and let H ⊣ G. Then [H] ⊣ [G] and hence there is x ∈ X
such that [H] = [U ] ◦ [[x]] and [G] = [[x]] ◦ [U ]. We conclude H ≥ U ◦ [x] = U(x, ·) and K ≥ [x] ◦ U = U(·, x).
As U(x, ·) ⊣ U(·, x), see [6], we obtain H = U(x, ·) and K = U(·, x) and (X,U) is Lawvere complete. □

5 Cauchy Completeness of Saturated L-Quasi-Uniform Limit Spaces

Let (X,Λ) be a saturated L-quasi-uniform limit space and let F,G ∈ FsatL (X). The following concepts were
introduced in [13].

(1) (F,G) are called a saturated pair L-prefilter if for all f ∈ F and all g ∈ G we have
∨

x∈X f(x)∗g(x) = ⊤.

(2) A saturated pair L-prefilter (F,G) is called a Cauchy pair if G⊗ F ∈ Λ.

(3) A saturated pair L-prefilter (F,G) converges to x ∈ X, (F,G) → x, if [x]⊗ F ∈ Λ and G⊗ [x] ∈ Λ.

We note that if a saturated pair L-prefilter (F,G) converges to x, then ([x]⊗ F) ◦ (G⊗ [x]) = G⊗ F ∈ Λ,
that is, (F,G) is a Cauchy pair.
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Proposition 5.1 (see also [6]). Let (X,Λ) be a saturated L-quasi-uniform limit space and let (F,G), (F′,G′)
be saturated pair L-prefilters on X.

(SCP1) ([x], [x]) is a Cauchy pair for all x ∈ X;

(SCP2) If (F,G) is a Cauchy pair and if F′ ≥ F and G′ ≥ G, then (F′,G′) is a Cauchy pair.

(SCP3) If (F,G), (F′,G′) are Cauchy pairs and if
∨

x∈X f(x) ∗ g′(x) = ⊤ for all f ∈ F and all g′ ∈ G′ and also∨
x∈X f ′(x) ∗ g(x) = ⊤ for all f ′ ∈ F and all g ∈ G′, then (F ∧ F′,G ∧G′) is a Cauchy pair.

Proof. We show only (SCP3). Obviously, (F ∧ F′,G ∧ G′) is a pair L-prefilter.
∨

x∈X f(x) ∗ g′(x) = ⊤
for all f ∈ F and all g′ ∈ G′, we conclude (G′ ⊗ F′) ◦ (G ⊗ F) = G ⊗ F′, see [7]. Similarly, we have
(G⊗ F) ◦ (G′ ⊗ F′) = G′ ⊗ F. By (SLUL2) then G⊗ F′ ∈ Λ and G′ ⊗ F ∈ Λ. Hence, using Proposition 3.10
[7], we obtain Λ ∋ (G⊗ F) ∧ (G⊗ F′) ∧ (G′ ⊗ F) ∧ (G′ ⊗ F′) = (G ∧G′)⊗ (F ∧ F′). □

This proposition shows that a saturated L-quasi-uniform limit space has an underlying ⊤-quasi-Cauchy
space. These spaces were introduced in [8].

Definition 5.2. A saturated L-quasi-uniform limit space (X,Λ) is called Cauchy complete if for all Cauchy
pairs (F,G) there is x ∈ X such that (F,G) → x.

For a saturated L-quasi-uniform space (X,U), a saturated pair L-prefilter (F,G) is called a Cauchy pair
[13] if G⊗F ≥ U , that is, if (F,G) is a Cauchy pair in (X, [U ]). The saturated pair L-prefilter (F,G) is called
convergent to x ∈ X if F ≥ U(x, ·) and G ≥ U(·, x). From ([x] ⊗ F) ◦ [x] = F we obtain [x] ⊗ F ≥ U if, and
only if, F ≥ U ◦ [x] = U(x, ·) and similarly we have G ⊗ [x] ≥ U if, and only if, G ≥ [x] ◦ U = U(·, x). Hence
we have (F,G) → x in (X,U) if, and only if, (F,G) → x in (X, [U ]). From these observations we immediately
obtain the following result.

Proposition 5.3. A saturated L-quasi-uniform space (X,U) is Cauchy complete if, and only if, (X, [U ]) is
Cauchy complete.

It is shown in [13, 14] that a saturated L-quasi-uniform space is Cauchy complete if, and only if, it is
Lawvere complete. Hence, by Propositions 4.4 and 5.3, for a saturated L-quasi-uniform space (X,U), the
saturated L-quasi-uniform limit space (X, [U ]) is Cauchy complete if, and only if, it is Lawvere complete.
This is also true for arbitrary saturated L-quasi-uniform limit spaces. We first show the following Lemma.

Lemma 5.4. Let (X,Λ) be a saturated L-quasi-uniform limit space, x ∈ X and F,G ∈ FsatL (X). Then
(1) [x]⊗ F ∈ Λ if, and only if, F ∈ Λ ◦ [[x]].
(2) G⊗ [x] ∈ Λ if, and only if, G ∈ [[x]] ◦ Λ.

Proof. (1) Let first [x] ⊗ F ∈ Λ. Then F = ([x] ⊗ F) ◦ [x] ∈ Λ ◦ [[x]]. (We have (⊤{x} ⊗ f) ◦ ⊤{x}(y) =∨
z∈X ⊤{x}(z) ∗ (⊤{x} ⊗ f)(z, y) = ⊤{x} ⊗ f(x, y) = f(y).)
Let now F ∈ Λ◦[[x]]. Then there is L ∈ Λ such that L◦[x] ≤ F. We conclude L ≤ [x]⊗(L◦[x]) ≤ [x]⊗F and

hence [x]⊗F ∈ Λ. (We have ⊤{x}⊗(l◦⊤{x})(s, t) = ⊤{x}(s)∗
∨

y∈X ⊤{x}(y)∗l(y, t) = ⊤{x}(s)∗l(x, t) ≤ l(s, t).)
(2) can be shown in a similar way. □

Theorem 5.5. A saturated L-quasi-uniform limit space (X,Λ) is Cauchy complete if, and only if, it is
Lawvere complete.

Proof. Let first (X,Λ) be Lawvere complete and let (F,G) be a Cauchy pair. We define Φ = Λ ◦ [F] and
Ψ = [G] ◦ Λ. It is not difficult to see that Φ,Ψ are prorelations. As Λ ◦ Φ = Λ ◦ Λ ◦ [F] ⊆ Λ ◦ F = Φ, Φ is a
left-promodule. Similarly, Ψ◦Λ = [G]◦Λ◦Λ ⊆ [G]◦Λ = Ψ, that is, Ψ is a right promodule. We show Φ ⊣ Ψ.
Let H ∈ Φ and K ∈ Ψ. Then there are L1,L2 ∈ Λ such that H ≥ L1 ◦ F and K ≥ G ◦ L2. A straightforward
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calculation shows that for l2, l2 ∈ LX×X and f, g ∈ LX we have l1 ◦ (g ⊗ f) ◦ l2 = (g ◦ l2) ⊗ (l1 ◦ f). Hence
K⊗H ≥ (G ◦ L2)⊗ (L1 ◦ F) = L1 ◦ (G⊗ F) ◦ L2 ∈ Λ by (SLUL4). Furthermore, we have F = [⊤∆X

] ◦ F ∈ Φ
and G = G ◦ [⊤∆X

] ∈ Ψ and therefore Φ ⊣ Ψ. As (X,Λ) is Lawvere complete, there is x ∈ X such that
Φ = x∗ and Ψ = x∗, that is, Λ ◦ [F] = Λ ◦ [[x]] and [G] ◦Λ = [[x]] ◦Λ. As F = [⊤∆X

] ◦F ∈ Λ ◦ [F] = Λ ◦ [[x]] we
conclude with Lemma 5.4 that [x]⊗ F ∈ Λ. In a similar way we see that G⊗ [x] ∈ Λ and hence (F,G) → x
and (X,Λ) is Cauchy complete.

Let now (X,Λ) be a Cauchy complete. Let Φ ⊣ Ψ. From Proposition 4.2 we see that there is a Cauchy
pair (F,G) with F ∈ Φ and G ∈ Ψ. By Cauchy completeness there is x ∈ X such that [x] ⊗ F ∈ Λ and
G ⊗ [x] ∈ Λ, that is, F ∈ Λ ◦ [[x]] and G ∈ [[x]] ◦ Λ. We define Φ = Λ ◦ [F] and Ψ = [G] ◦ Λ. Then, as
in the first part of the proof, Φ ⊣ Ψ. We have Φ = Λ ◦ [F] ⊆ Λ ◦ Φ ⊆ Φ. In a similar way we conclude
Ψ ⊆ Ψ and hence, by Lemma 3.8, Φ = Λ ◦ [F]. From F ∈ Λ ◦ [[x]] we conclude [F] ⊆ Λ ◦ [[x]] and hence
Φ = Λ ◦ [F] ⊆ Λ ◦ Λ ◦ [[x]] ⊆ Λ ◦ [[x]] = x∗.

Let F ∈ x∗ = Λ ◦ [[x]]. Then there is L ∈ Λ such that L ◦ [x] ≤ F. We note that for f ∈ F, g ∈ G we have∨
x∈X f(x) ∗ g(x) = ⊤ and therefore (g ⊗⊤{x}) ◦ f = ⊤{x}. Hence we have [x] = (G⊗ [x]) ◦ F ∈ Λ ◦ Φ = Φ.

It follows that F ≥ L ◦ [x] ∈ Λ ◦ Φ = Φ and we have F ∈ Φ, that is x∗ ⊆ Φ. Similar arguments show that
Ψ = x∗ and (X,Λ) is Lawvere complete. □

6 Conclusion

We studied two completeness notions for saturated L-quasi-uniform limit spaces. The one is based on the
concept of adjoint promodules and generalizes an approach of Clementino and Hofmann [2]. The other uses
the concept of the Cauchy pair and generalizes a classical approach due to Lindgren and Fletcher [10]. We
show that both approaches are equivalent.

An open problem is the construction of a completion based on either of the two completeness notions.
This will still deserve more work.
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