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1 Introduction

As we all know, closure operator and interior operator are not only two important concepts in topology,
but also have important applications in many other branches of mathematics. For example, it is a basic
tool in functional analysis, algebra, lattice theory, matroid theory and convexity theory and so on. In [20],
Shi generalized them to L-fuzzy topological spaces and called them L-fuzzy interior operators and L-fuzzy
closure operators. L-fuzzy interior operators and L-fuzzy closure operators can be used to characterize L-fuzzy
topology T , but don’t rely on the level L-topology T[r].

The notions of semiopenness, preopenness and regular openness are very important in general topology
[15]. They were extended to L-topological spaces by Azad, Singal and Prakash, respectively (see [1, 23]).
The notions of semicontinuity and precontinuity were also extended to L-topological spaces by Azad and
Nanda respectively (see [1, 17]). Moreover the notions of semiopenness and regular openness were extended
to fuzzifying topological spaces by A.M. Zahran, F.M. Zeyada and A.K. Mousa respectively (see [25, 26]).
Further in [12, 13, 14], S.J. Lee and E.P. Lee introduced the notions of fuzzy r-semiopen sets, fuzzy r-preopen
sets and fuzzy r-regular open sets in [0, 1]-fuzzy topological space (X, T ) by means of the level [0, 1]-topology
T[r].

In 2011, Shi introduced the notions of LM -fuzzy semiopen operator and LM -fuzzy preopen operator in
LM -fuzzy topological spaces by means of the idea of [20]. Further they were applied to many research fields
by Ghareeb, Al-Omeri and Liang [3, 4, 5, 6, 7, 21].

In this paper, we shall present some characterizations of the LM -fuzzy interior operator, the LM -fuzzy
closure operator, LM -fuzzy semiopen operator and LM -fuzzy preopen operator. We shall show that these
kinds of openness degrees are different from those defined by level [0, 1]-topology.
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2 Preliminaries

Throughout this paper, L and M denote completely distributive lattices with order-reversing involutions, X
is a nonempty set. The set of all nonzero co-prime elements of L is denoted by J(L). The set of all nonzero
co-prime elements of LX is denoted by J(LX). It is easy to see that J(LX) is exactly the set of all fuzzy
points xλ (λ ∈ J(L)).

We say that a is a wedge below b in M , denoted by a ≺ b, if for every subset D ⊆ M ,
∨

D ≥ b implies
d ≥ a for some d ∈ D [2]. A complete lattice M is completely distributive if and only if b =

∨
{a ∈ M | a ≺ b}

for each b ∈ M . {a ∈ M | a ≺ b} is called the greatest minimal family of b, denoted by β(b). α(a) = {b ∈
M | b′ ≺ a′} is called the greatest maximal family of a.

In a completely distributive lattice M , α is an
∧
-
∪

map, β is a union-preserving map, and for each
a ∈ M , a =

∨
β(a) =

∧
α(a) (see [10, 27]).

For A ∈ MX and a ∈ M , we use the following symbols [18, 19].

A[a] = {x ∈ X | A(x) ̸≥ a}, A(a) = {x ∈ X | A(x) ̸̸≤ a},

A(a) = {x ∈ X | a ∈ β(A(x))}, A[a] = {x ∈ X | a /∈ α(A(x))}.

Definition 2.1. [8, 9, 11, 22, 24] A map T : LX → M is called an LM -fuzzy pretopology on X provided that
it satisfies the following conditions:

(LFT1) T (X) = T (∅) = ⊤M ;

(LFT2) T
(∨

i∈ΩAi

)
⩾
∧

i∈Ω T (Ai), ∀{Ai | i ∈ Ω} ⊆ LX .

An LM -fuzzy pretopology T is called an LM -fuzzy topology if it satisfies the following condition again.

(LFT3) T (U ∧ V ) ≥ T (U) ∧ T (V ), ∀U, V ∈ LX .
T (U) can be interpreted as the degree to which U is an L-open set. T ∗(U) = T (U ′) is called the degree

of closedness of U . The pair (X, T ) is called an LM -fuzzy topological space. When L = M , an LM -fuzzy
topology is also called an L-fuzzy topology. When L = M = [0, 1], an LM -fuzzy topology is called a [0, 1]-fuzzy
topology. In particular, when M = {0, 1}, an LM -fuzzy topology is called an L-topology and when L = {0, 1},
an LM -fuzzy topology is called an M -fuzzifying topology.

A map f : (X, T1) → (Y, T2) is said to be continuous with respect to LM -fuzzy topologies T1 and T2 if
T1(f←L (U)) ≥ T2(U) holds for all U ∈ LY , where f←L is defined by f←L (U)(x) = U(f(x)).

Analogous to Theorem 3.2 in [27], we have the following.

Theorem 2.2. [27] Let T : LX → M be a map. Then the following conditions are equivalent:

(T1) T is an LM -fuzzy topology on X.

(T2) ∀a ∈ M , T[a] is an L-topology on X.

(T3) ∀a ∈ M , T [a] is an L-topology on X.

Definition 2.3. [20, 22] An LM -fuzzy interior operator on X is a map Int : LX → MJ(LX) satisfying the
following conditions:

(FI1) Int(A)(xλ) =
∧
µ≺λ

Int(A)(xµ), ∀xλinJ(LX), ∀A ∈ LX ;

(FI2) Int(X)(xλ) = ⊤M for any xλ ∈ J(LX);
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(FI3) Int(A)(xλ) = ⊥M for any xλ ̸≤ A;

(FI4) Int(A ∧B) = Int(A) ∧ Int(B);

(FI5) ∀a ∈ M\{⊤M}, (Int(A))(a) ⊆
(
Int
(∨

(Int(A))(a)
))(a)

.

Corollary 2.4. [20, 22] Let T be an LM -fuzzy topology on X and let IntT be the LM -fuzzy interior operator
induced by T . Then ∀xλ ∈ J(LX), ∀A ∈ LX ,

IntT (A)(xλ) =
∨

xλ≤V≤A
T (V ) and T (A) =

∧
xλ≺A

IntT (A)(xλ).

Definition 2.5. [20, 22] An LM -fuzzy closure operator on X is a map Cl : LX → MJ(LX) satisfying the
following conditions:

(FC1) Cl(A)(xλ) =
∧
µ≺λ

Cl(A)(xµ), ∀xλ ∈ J(LX);

(FC2) Cl(∅)(xλ) = ⊥M for any xλ ∈ J(LX);

(FC3) Cl(A)(xλ) = ⊤M for any xλ ≤ A;

(FC4) Cl(A ∨B) = Cl(A) ∨ Cl(B);

(FC5) ∀a ∈ M\{⊥M},
(
Cl
(∨

(Cl(A))[a]
))

[a]
⊆ (Cl(A))[a].

Corollary 2.6. [20, 22] Let T be an LM -fuzzy topology on X and let ClT : LX → MJ(LX) be the LM -fuzzy
closure operator induced by T . Then ∀xλ ∈ J(LX), ∀A ∈ LX ,

ClT (A)(xλ) =
∧

xλ ̸≤D≥A

(
T (D′)

)′
and T (A) =

∧
xλ ̸≤A′

Cl(A′)(xλ)
′.

3 The characterizations of LM-fuzzy interiors and closures

In this section, our aim is to present some characterizations of LM -fuzzy interiors and LM -fuzzy closures.

Theorem 3.1. If a map Int : LX → MJ(LX) satisfies the following (FI1)–(FI4):

(FI1) Int(A)(xλ) =
∧
µ≺λ

Int(A)(xµ), ∀xλ ∈ J(LX), ∀A ∈ LX ;

(FI2) Int(X)(xλ) = ⊤M for any xλ ∈ J(LX);

(FI3) Int(A)(xλ) = ⊥M for any xλ ̸≤ A;

(FI4) Int(A ∧B) = Int(A) ∧ Int(B),

then the following (FI5), (FI6) and (FI7) are equivalent:

(FI5) Int(A)(xλ) =
∨

xλ≤V≤A

∧
yµ≺V

Int(V )(yµ);

(FI6) ∀a ∈ M\{⊤M}, (Int(A))(a) ⊆
(
Int
(∨

(Int(A))(a)
))(a)

;
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(FI7) ∀a ∈ M\{⊥M}, (Int(A))(a) ⊆
(
Int
(∨

(Int(A))(a)
))

(a)
.

Proof. By means of Theorem 3.3 in [22] we know that (FI5) is equivalent to (FI6). Now we prove that (FI5)
is equivalent to (FI7).

In order to prove (FI5) ⇒ (FI7), suppose xλ ∈ (Int(A))(a). Then a ≺ Int(A)(xλ). By (FI5) we know that

there exists V ∈ LX such that xλ ≤ V ≤ A and

a ≺
∧

yµ≺V
Int(V )(yµ) ≤ Int(V )(yµ) ≤ Int(A)(yµ) for all yµ ≺ V .

This implies yµ ∈ (Int(V ))(a) ⊆ (Int(A))(a). Further we obtain V ≤
∨
(Int(V ))(a) ≤

∨
(Int(A))(a). Therefore

it holds
a ≺

∧
yµ≺V

Int(V )(yµ) ≤
∨

xλ≤V≤
∨
(Int(A))(a)

∧
yµ≺V

Int(V )(yµ) = Int
(∨

(Int(A))(a)

)
(xλ).

This shows xλ ∈
(
Int
(∨

(Int(A))(a)
))

(a)
. (FI7) is proved.

(FI7) ⇒ (FI5). It is easy to check that Int (A) (xλ) ≥
∨

xλ≤V≤A

∧
yµ≺V

Int (V ) (yµ) holds. We only need to

show that Int (A) (xλ) ≤
∨

xλ≤V≤A

∧
yµ≺V

Int (V ) (yµ) is true.

Suppose that a ≺ Int(A)(xλ). Then by (FI7) we know xλin(Int(A))(a) ⊆
(
Int
(∨

(Int(A))(a)
))

(a)
. Let

V =
∨
(Int(A))(a). Then xλ ≤ V ≤ A and a ≺ Int(V )(xλ). For all yµ ≺ V , there exists yγ ∈ (Int(A))(a) such

that yµ ≺ yγ . By (FI1) and (FI7) we know

yµ ∈ (Int(A))(a) ⊆
(
Int
(∨

(Int(A))(a)

))
(a)

= (Int (V ))(a) , i.e., a ≺ Int(V )(yµ).

This implies a ≤
∧

yµ≺V
Int(V )(yµ). Hence we have

a ≤
∨

xλ≤V≤
∨
(Int(A))(a)

∧
yµ≺V

Int(V )(yµ) ≤
∨

xλ≤V≤A

∧
yµ≺V

Int(V )(yµ).

This shows that Int(A)(xλ) ≤
∨

xλ≤V≤A

∧
yµ≺V

Int(V )(yµ) is true. The proof is completed. □

Theorem 3.2. If a map Cl : LX → MJ(LX) satisfies the following (FC1)–(FC4):

(FC1) Cl(A)(xλ) =
∧
µ≺λ

Cl(A)(xµ), ∀xλ ∈ J(LX);

(FC2) Cl(∅)(xλ) = ⊥M for any xλ ∈ J(LX);

(FC3) Cl(A)(xλ) = ⊤M for any xλ ≤ A;

(FC4) Cl(A ∨B) = Cl(A) ∨ Cl(B),

then the following (FC5), (FC6) and (FC7) are equivalent:

(FC5) Cl(A)(xλ) =
∧

xλ≰B≥A

∨
yµ≰B

(Cl(B))(yµ);

(FC6) ∀a ∈ M\{⊥M},
(
Cl
(∨

(Cl(A))[a]
))

[a]
⊆ (Cl(A))[a];

(FC7) ∀a ∈ M\{⊤M},
(
Cl
(∨

(Cl(A))[a]
))[a] ⊆ (Cl(A))[a].
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Proof. By means of Theorem 3.1 in [22] we know that (FC5) is equivalent to (FC6). Now we prove that
(FC5) is equivalent to (FC7).

(FC5) ⇒ (FC7). Suppose that xλ ̸∈ Cl(A)[a]. Then by (FC5) we obtain the following fact.

a ∈ α (Cl(A)(xλ)) = α

 ∧
xλ ̸≤B≥A

∨
yµ ̸≤B

Cl(B)(yµ)

 =
∪

xλ ̸≤B≥A
α

 ∨
yµ ̸≤B

Cl(B)(yµ)

 .

Hence there exists B ∈ LX with xλ ≰ B ≥ A such that a ∈ α

( ∨
yµ≰B

Cl(B)(yµ)

)
, which implies ∀yµ ≰ B,

a ∈ α(Cl(B)(yµ)), i.e., yµ ̸∈ Cl(B)[a]. Therefore it follows
∨

Cl(B)[a] ≤ B. Thus we have xλ ≰ B ≥∨
Cl(B)[a] ≥

∨
Cl(A)[a]. Hence we obtain the following formula.

a ∈
∪

xλ≰B≥
∨

Cl(A)[a]

α

 ∨
yµ ̸≤B

Cl(B)(yµ)

 = α

 ∧
xλ≰B≥

∨
Cl(A)[a]

∨
yµ ̸≤B

Cl(B)(yµ)


= α

(
Cl
(∨

Cl(A)[a]
)
(xλ)

)
.

This implies xλ ̸∈ Cl
(∨

Int(A)[a]
)[a]

. (FC7) is proved.
(FC7) ⇒ (FC5). It is easy to check that Cl(A)(xλ) ≤

∧
xλ≰B≥A

∨
yµ≰B

(Cl(B))(yµ) holds. Now we prove

Cl(A)(xλ) ≥
∧

xλ≰B≥A

∨
yµ≰B

(Cl(B))(yµ).

Suppose that a ∈ α (Cl(A)(xλ)). Then there exists b ∈ L such that a ∈ α(b) and b ∈ α (Cl(A)(xλ)). By
(FC7) we know

xλ ̸∈ (Cl(A))[b] ⊇
(
Cl
(∨

(Cl(A))[b]
))[b]

.

Let D =
∨

Cl(A)[b]. Then A ≤ D and b ∈ α (Cl (D) (xλ)). In this case, we must have xλ ̸≤ D. In fact,
if xλ ≤ D, then xµ ≺ xλ ≤ D for all µ ≺ λ, hence there exists xγ ∈ Cl(A)[b] such that xγ ≥ xµ. From
Cl(A)(xγ) ≤ Cl(A)(xµ) we know b ̸∈ α(Cl(A)(xµ)) for all µ ≺ λ. This implies

b ̸∈
∪
µ≺λ

α (Cl(A)(xµ)) = α

∧
µ≺λ

Cl(A)(xµ)

 = α (Cl(A)(xλ)) ,

which contradicts to b ∈ α (Cl (D) (xλ)). Therefore xλ ̸≤ D ≥ A. For all yµ ̸≤ D, by

(Cl(A))[b] ⊇
(
Cl
(∨

(Cl(A))[b]
))[b]

= (Cl (D))[b]

we know yµ ̸≤ (Cl (D))[b], i.e., b ∈ α (Cl (D) (yµ)). Further we have b ≥
∨

yµ ̸≤D
Cl (D) (yµ). This shows

a ∈ α (b) ⊆ α

 ∨
yµ ̸≤D

Cl (D) (yµ)

 ⊆
∪

xλ≰B≥
∨

Cl(A)[b]

α

 ∨
yµ ̸≤B

Cl(B)(yµ)


= α

 ∧
xλ≰B≥

∨
Cl(A)[b]

∨
yµ ̸≤B

Cl(B)(yµ)

 ⊆ α

 ∧
xλ≰B≥A

∨
yµ ̸≤D

Cl(B)(yµ)

 .

Therefore it follows Cl(A)(xλ) ≥
∧

xλ≰B≥A

∨
yµ≰B

(Cl(B))(yµ). The proof is completed. □
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Theorem 3.3. Let T be an LM -fuzzy topology on X, Int be the LM -fuzzy interior operator in (X, T ) and
Cl be the LM -fuzzy closure operator in (X, T ). Then for any A ∈ LX and for any a ∈ M \ {⊥M}, it follows

(1) A ∈ T[a] ⇔ ∀xλ ≺ A, Int(A)(xλ) ≥ a ⇔ A ≤
∨
(Int(A))[a] .

(2) A ∈ T ∗[a] ⇔ ∀xλ ̸≤ A, Cl(A)(xλ) ≤ a′ ⇔
∨

(Cl(A))(a
′) ≤ A.

Proof. (1) From Corollary 2.4 we easily obtain

A ∈ T[a] ⇔ a ≤ T (A) ⇔ ∀xλ ≺ A, Int(A)(xλ) ≥ a.

Moreover it is obvious
∀xλ ≺ A, Int(A)(xλ) ≥ a ⇒ A ≤

∨
Int(A)[a].

Now we prove

A ≤
∨

Int(A)[a] ⇒ ∀xλ ≺ A, Int(A)(xλ) ≥ a.

Suppose xλ ≺ A. By A ≤
∨

Int(A)[a], there exists xµ ∈ Int(A)[a] such that xλ ≺ xµ. Hence

Int(A)(xλ) ≥
∧
λ≺µ

Int(A)(xλ) = Int(A)(xµ) ≥ a.

(2) From Corollary 2.6 we easily obtain

A ∈ T ∗[a] ⇔ a ≤ T ∗(A) ⇔ ∀xλ ̸≤ A, Cl(A)(xλ) ≤ a′.

Moreover it is obvious ∨
Cl(A)(a

′) ≤ A ⇒ ∀xλ ̸≤ A, Cl(A)(xλ) ≤ a′.

Now we prove

∀xλ ̸≤ A, Cl(A)(xλ) ≤ a′ ⇒
∨

Cl(A)(a
′) ≤ A.

Suppose that xλ ≺
∨
Cl(A)(a

′). Then there exists xµ ∈ Cl(A)(a
′) (that is, Cl(A)(xµ) ̸≤ a′) such that xλ ≺ xµ.

Hence by

Cl(A)(xλ) ≥
∧
λ≺µ

Cl(A)(xλ) = Cl(A)(xµ) ̸≤ a′

we obtain Cl(A)(xλ) ̸≤ a′. This implies xλ ≤ A.
∨

Cl(A)(a
′) ≤ A is proved. □

Theorem 3.4. Let T be an LM -fuzzy topology on X, Int be the LM -fuzzy interior operator in (X, T ) and
Cl be the LM -fuzzy closure operator in (X, T ). Then for any A ∈ LX and for any a ∈ M \ {⊥M}, it follows

(1) A ∈ T [a] ⇔ ∀xλ ≺ A, xλ ∈ Int(A)[a] ⇔ A ≤
∨

Int(A)[a].

(2) A ∈ T ∗[a] ⇔ ∀xλ ̸≤ A, xλ ̸∈ Cl(A)(a′) ⇔
∨

Cl(A)(a′) ≤ A.

Proof. (1) From Corollary 2.4 we easily obtain

A ∈ T [a] ⇔ a ̸∈ α(T (A)) ⇔ ∀xλ ≺ A, a ̸∈ α(Int(A)(xλ)) ⇔ ∀xλ ≺ A, xλ ∈ Int(A)[a].

Moreover it is obvious
∀xλ ≺ A, xλ ∈ Int(A)[a] ⇒ A ≤

∨
Int(A)[a].

Now we prove

A ≤
∨

Int(A)[a] ⇒ ∀xλ ≺ A, xλ ∈ Int(A)[a].
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Suppose xλ ≺ A. By A ≤
∨

Int(A)[a], there exists xµ ∈ Int(A)[a] such that xλ ≺ xµ. Hence by

Int(A)(xλ) ≥
∧
λ≺µ

Int(A)(xλ) = Int(A)(xµ) and a ̸∈ α(Int(A)(xµ))

we know a ̸∈ α(Int(A)(xλ)), i.e., xλ ∈ Int(A)[a].

(2) From Corollary 2.6 we easily obtain

A ∈ T ∗[a] ⇔ a ̸∈ α(T ∗(A))
⇔ ∀xλ ̸≤ A, a ̸∈ α(Cl(A)(xλ)

′)

⇔ ∀xλ ̸≤ A, a′ ̸∈ β(Cl(A)(xλ))

⇔ ∀xλ ̸≤ A, xλ ̸∈ Cl(A)(a′).

It is easy to check ∀xλ ̸≤ A, xλ ̸∈ Cl(A)(a′) ⇔
∨

Cl(A)(a′) ≤ A. □

4 The Characterizations of LM-fuzzy (semiclosed, preopen) preclosed
operators

In 2011, Shi presented the notions of LM -fuzzy semiopen operator and LM -fuzzy preopen operator by
means of LM -fuzzy topology T . They were applied to many research fields by Ghareeb, Al-Omeri and Liang
[3, 4, 5, 6, 7, 20]. Now we give their characterizations by means of LM -fuzzy interior operator and LM -fuzzy
closure operator.

Definition 4.1. [6, 16] Let T be an LM -fuzzy topology on X. For any A ∈ LX , define two mappings
Ts, Tp : LX → M by

Ts(A) =
∨
B≤A

T (B) ∧
∧

xλ≺A

∧
xλ ̸≤D≥B

(
T (D′)

)′ ,

Tp(A) =
∧

xλ≺A

∨
xλ≺B

T (B) ∧
∧

yµ≺B

∧
yµ ̸≤D≥A

(
T (D′)

)′ .

Then Ts is called the LM -fuzzy semiopen operator induced by T , and Tp is called the LM -fuzzy preopen
operator induced by T . For all A ∈ LX , define T ∗s (A) = Ts(A′) and T ∗p (A) = Tp(A′), then T ∗s and T ∗p are
respectively called the LM -fuzzy semiclosed operator and the LM -fuzzy preclosed operator induced by T .

The next theorem presents a characterization of the LM -fuzzy semiclosed operator.

Theorem 4.2. Let T be an LM -fuzzy topology on X. Then for any A ∈ LX ,

T ∗s (A) =
∨
B≥A

T ∗(B) ∧
∧

xµ ̸≤A

(
IntT (B)(xµ)

)′ . (1)
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Proof. On the one hand, we have

T ∗s (A) = Ts(A′) =
∨

B≥A

{
T (B′) ∧

∧
xλ≺A′

ClT (B′)(xλ)

}

≥
∨

B≥A

{
T (B′) ∧

∧
xλ≤A′

ClT (B′)(xλ)

}

=
∨

B≥A

{
T (B′) ∧

∧
xλ≤A′

∧
µ̸≤λ′

(
IntT (B)(xµ)

)′}

≥
∨

B≥A

{
T ∗(B) ∧

∧
xµ ̸≤A

(
IntT (B)(xµ)

)′}
.

On the other hand, we can prove

∨
B≥A

{
T ∗(B) ∧

∧
xµ ̸≤A

(
IntT (B)(xµ)

)′}

=
∨

B≥A

{
T (B′) ∧

∧
A̸≤(xλ)′

∨
µ̸≤λ′

ClT (B′)(xµ)

}

≥
∨

B′≤A′

{
T (B′) ∧

∧
xµ≺A′

ClT (B′)(xµ)

}
= Ts(A′) = T ∗s (A).

The proof of (1) is completed. □
The next theorem presents a characterization of the LM -fuzzy preclosed operator.

Theorem 4.3. Let T be an LM -fuzzy topology on X. Then for any A ∈ LX ,

T ∗p (A) =
∧

xλ ̸≤A

∨
xλ ̸≤D

T ∗(D) ∧
∧

yγ ̸≤D

(
IntT (A)(yγ)

)′ . (2)

Proof. On the one hand, we have

T ∗p (A) = Tp(A′) =
∧

xλ≺A′

∨
xλ≺B

{
T (B) ∧

∧
yµ≺B

ClT (A′)(yµ)

}

=
∧

xλ ̸≤A

∨
xλ≰B′

{
T (B) ∧

∧
yµ≺B

ClT (A′)(yµ)

}

=
∧

xλ ̸≤A

∨
xλ≰B′

{
T (B) ∧

∧
yµ≺B

∧
γ ̸≤µ′

(
IntT (A)(yγ)

)′}

≥
∧

xλ ̸≤A

∨
xλ≰B′

{
T (B) ∧

∧
yγ ̸≤B′

(
IntT (A)(yγ)

)′}

=
∧

xλ ̸≤A

∨
xλ≰D

{
T ∗(D) ∧

∧
yγ ̸≤D

(
IntT (A)(yγ)

)′}
.



14 Fu-Gui Sh-TFSS Vol.1, No.2, (2022)

On the other hand, we can prove

∧
xλ ̸≤A

∨
xλ≰D

{
T ∗(D) ∧

∧
yγ ̸≤D

(
IntT (A)(yγ)

)′}

=
∧

xλ≺A′

∨
xλ≺D′

{
T (D′) ∧

∧
D′ ̸≤(yγ)′

(
IntT (A)(yγ)

)′}

≥
∧

xλ≺A′

∨
xλ≺D′

{
T (D′) ∧

∧
∃yµ≺D′,yµ ̸≤(yγ)′

(
IntT (A)(yγ)

)′}

≥
∧

xλ≺A′

∨
xλ≺D′

{
T (D′) ∧

∧
∃yµ≺D′,yµ ̸≤(yγ)′

∨
ν ̸≤γ′

ClT (A′)(yν)

}

≥
∧

xλ≺A′

∨
xλ≺D′

{
T (D′) ∧

∧
yµ≺D′

ClT (A′)(yµ)

}

≥
∧

xλ≺A′

∨
xλ≺B

{
T (B) ∧

∧
yµ≺B

ClT (A′)(yµ)

}
= Ts(A′) = T ∗s (A).

The proof of (2) is completed. □
The following is a characterization of LM -fuzzy preopen operator, which is simpler than Definition 4.1.

Theorem 4.4. Let T be an LM -fuzzy topology on X. Then for any A ∈ LX ,

Tp(A) =
∨
A≤B

T (B) ∧
∧

yµ≺B

∧
yµ ̸≤D≥A

(
T (D′)

)′ . (3)

Proof. First we prove

Tp(A) ≤
∨
A≤B

T (B) ∧
∧

yµ≺B

∧
yµ ̸≤D≥A

(
T (D′)

)′ .

Suppose that there exists a ∈ M such that a ≺ Tp(A). Then by

Tp(A) =
∧

xλ≺A

∨
xλ≺B

{
T (B) ∧

∧
yµ≺B

∧
yµ ̸≤D≥A

(T (D′))′
}

we know that ∀xλ ≺ A, there exists Bxλ
∈ LX such that xλ ≺ Bxλ

, T (Bxλ
) ≥ a and ∀yµ ≺ Bxλ

, a ≤∧
yµ ̸≤D≥A

(T (D′))′. Let B =
∨
{Bxλ

| xλ ≺ A}. Then A ≤ B, T (B) ≥ a and ∀yµ ≺ B, there exists Bxλ
such

that ∀yµ ≺ Bxλ
. This implies

∨
A≤B

T (B) ∧
∧

yµ≺B

∧
yµ ̸≤D≥A

(
T (D′)

)′ ≥ a.

Hence

Tp(A) ≤
∨
A≤B

T (B) ∧
∧

yµ≺B

∧
yµ ̸≤D≥A

(
T (D′)

)′ .

The inverse of the above inequality is obvious. □
By means of LM -fuzzy interior operator and LM -fuzzy closure operator we can give the other character-

izations of LM -fuzzy preopen operator and LM -fuzzy preclosed operator.
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Corollary 4.5. In an LM -fuzzy topological space (X, T ), it holds that for any A ∈ LX ,

Tp(A) =
∨

A≤B

{
T (B) ∧

∧
yµ≺B

Cl(A)(yµ)

}
, (4)

T ∗p (A) =
∨

A≤D

{
T ∗(D) ∧

∧
yγ ̸≤D

(
IntT (A)(yγ)

)′}
. (5)

Proof. (4) can be proved from Corollary 2.6 and Theorem 4.4. Based on Theorem 4.3 and analogous to the
proof of Theorem 4.4 we can obtain (5) □

5 LM-fuzzy regular open operators

In this section, we shall present the notions of LM -fuzzy regularly open operators and LM -fuzzy regularly
closed operators in LM -fuzzy topological spaces.

Definition 5.1. Let T be an LM -fuzzy topology on X. For any A ∈ LX , define a map Tr : LX → M by

Tr(A) = Ts(A′) ∧ T (A) = T ∗s (A) ∧ T (A).

Then Tr is called the LM -fuzzy regularly open operator corresponding to T , where Tr(A) can be regarded as
the degree to which A is regular open and T ∗r (B) = Tr(B′) can be regarded as the degree to which B is regularly
closed.

Theorem 5.2. Let Tr be the LM -fuzzy regularly open operator in LM -fuzzy topological space (X, T ). Then

(1) Tr(∅) = Tr(X) = ⊤M .

(2) Tr(A) ≤ T (A) for any A ∈ LX .

(3) Tr(A ∧B) ≥ Tr(A) ∧ Tr(B) for any A,B ∈ LX .

Proof. (1) and (2) are obvious. In order to prove (3), we first prove the following inequality.

T ∗s

(∧
i∈Ω

Ai

)
≥
∧
i∈Ω

T ∗s (Ai) for any subfamily {Ai | i ∈ Ω} of LX . (6)

Let a ∈ L and a ≺
∧
i∈Ω

T ∗s (Ai). Then for any i ∈ Ω, there exists Bi ≤ (Ai)
′ such that

a ≺ T (Bi) and a ≺
∧

xλ≺(Ai)′

∧
xλ ̸≤D≥Bi

(
T (D′)

)′
.

Hence

a ≤
∧
i∈Ω

T (Bi) ≤ T

(∨
i∈Ω

Bi

)
and a ≤

∧
i∈Ω

∧
xλ≺(Ai)′

∧
xλ ̸≤D≥Bi

(
T (D′)

)′
.

By {
xλ | xλ ≺

(∧
i∈Ω

Ai

)′}
=
∪
i∈Ω

{
xλ | xλ ≺ (Ai)

′} ,
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we have

T ∗s
( ∧

i∈Ω
Ai

)
=

∨
B≤
( ∧

i∈Ω
Ai

)′

T (B) ∧
∧

xλ≺
( ∧

i∈Ω
Ai

)′

∧
xλ ̸≤D≥B

(T (D′))′


≥ T

( ∨
i∈Ω

Bi

)
∧
∧
i∈Ω

∧
xλ≺(Ai)′

∧
xλ ̸≤D≥

∨
i∈Ω

Bi

(T (D′))′

≥ T
( ∨

i∈Ω
Bi

)
∧
∧
i∈Ω

∧
xλ≺(Ai)′

∧
xλ ̸≤D≥Bi

(T (D′))′

≥ a.

This shows T ∗s
( ∧

i∈Ω
Ai

)
≥
∧
i∈Ω

T ∗s (Ai).

Since T is an L-fuzzy topology, it follows that T (A ∧B) ≥ T (A) ∧ T (B). Hence by (6), we obtain

Tr(A ∧B) = T (A ∧B) ∧ T ∗s (A ∧B)

≥ T (A) ∧ T (B) ∧ T ∗s (A) ∧ T ∗s (B)

= Tr(A) ∧ Tr(B).

(3) is proved. □

Definition 5.3. A map f : X → Y between LM -fuzzy topological spaces (X,S) and (Y, T ) is called LM -fuzzy
almost continuous if Tr(U) ≤ S(f←L (U)) holds for any U ∈ LY .

Obviously an LM -fuzzy continuous map is LM -fuzzy almost continuous. Moreover the following result
is also obvious.

Corollary 5.4. A map f : X → Y between LM -fuzzy topological spaces (X,S) and (Y, T ) is almost contin-
uous if and only if T ∗r (U) ≤ S∗(f←L (U)) for any U ∈ LY .

S.J. Lee and E.P. Lee presented the definitions of the fuzzy r-semiopen set, fuzzy r-preopen and fuzzy
r-regularly open set, which rely on level [0,1]-topologies.

Definition 5.5. [12, 13, 14] Let A be a [0,1]-fuzzy set of a [0,1]-fuzzy topological space (X, T ) and r ∈ (0, 1].
Then A is said to be

(1) fuzzy r-semiopen if there is a fuzzy r-open set B such that B ≤ A ≤ Cl(B, r).

(2) fuzzy r-preopen if A ≤ ı(Cl(A, r), r).

(3) fuzzy r-regularly open if A = ı(Cl(A, r), r).

Based on Definition 5.5 we can introduce the other definition of LM -fuzzy regular openness.

Definition 5.6. Let (X, T ) be a [0, 1]-fuzzy topological space. For any A ∈ [0, 1]X , define

(1) ST (A) =
∨
{r ∈ (0, 1] | A is r-semiopen in T[r]}.

(2) PT (A) =
∨
{r ∈ (0, 1] | A is r-preopen in T[r]}.

(3) RT (A) =
∨
{r ∈ (0, 1] | A is r-regularopen in T[r]}.



Novel Characterizations of LM -Fuzzy Open Operators-TFSS Vol.1, No.2, (2022) 17

In general, ST ̸= Ts, PT ̸= Tp, RT ̸= Tr, these can be seen from the following example.

Example 5.7. Let X = [0, 1] and A1, A2, A3 be fuzzy sets defined by

A1(x) = x, A2(x) = 1− x, A3(x) = 0.5, ∀x ∈ [0, 1].

Define T : [0, 1]X → [0, 1] by

T (G) =


1, if G = ∅, X,
0.8, if G = A1, A1 ∨A2, A1 ∧A2,
0.6, if G = A3, A1 ∧A3, A2 ∧A3, A1 ∨A3, A2 ∨A3,
0.1, if G = A2

0, otherwise.

It is easy to check that T is a [0, 1]-fuzzy topology and

T[1] = {∅, X}; T[0.8] = {∅, X,A1, A1 ∨A2, A1 ∧A2};
T[0.6] = {∅, X,A1, A1 ∨A2, A1 ∧A2, A3, A1 ∧A3, A2 ∧A3, A1 ∨A3, A2 ∨A3};

T[0.1] = {∅, X,A1, A2, A1 ∨A2, A1 ∧A2, A3, A1 ∧A3, A2 ∧A3, A1 ∨A3, A2 ∨A3}.

It is easy to check that A1 is a fuzzy 0.8-open set and 0.3-closed set. This implies RT (A1) = 0.3. By

Ts(A2) =
∨

B≤A2

T (B) ∧
∧

xλ<A2

∧
xλ ̸≤D≥B

(T (D′))′


=

T (A1 ∧A2) ∧
∧

xλ<A2

∧
xλ ̸≤D≥A1∧A2

(T (D′))′


∨

T (A2 ∧A3) ∧
∧

xλ<A2

∧
xλ ̸≤D≥A2∧A3

(T (D′))′


∨

T (A2) ∧
∧

xλ<A2

∧
xλ ̸≤D≥A2

(T (D′))′


= (0.8 ∧ 0.2) ∨ (0.6 ∧ 0.4) ∨ (0.1 ∧ 1) = 0.4,

and
Tr(A1) = Ts((A1)

′) ∧ T (A1) = Ts(A2) ∧ T (A1) = 0.4

we know RT (A1) ̸= Tr(A1).
It is easy to check that A2 is a fuzzy 0.1-open set and 0.8-closed set. This implies PT (A2) = 0.1. By

Tp(A2) =
∨

B≥A2

T (B) ∧
∧

xλ≺B

∧
xλ ̸≤D≥A2

(T (D′))′


=

T (A1 ∨A2) ∧
∧

xλ≺A1∨A2

∧
xλ ̸≤D≥A2

(T (D′))′


∨

T (A2) ∧
∧

xλ≺A2

∧
xλ ̸≤D≥A2

(T (D′))′


= (0.8 ∧ 0.2) ∨ (0.1 ∧ 1) = 0.2.
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we know PT (A2) ̸= Tp(A2).
It is easy to check that A1∨A3 is a fuzzy 0.6-open set and 0.6-closed set. This implies ST (A1∨A3) = 0.6.

Hence by the following fact we know ST (A1 ∨A3) ̸= Ts(A1 ∨A3).

Ts(A1 ∨A3)

=
∨

B≤A1∨A3

T (B) ∧
∧

xλ≺A1∨A3

∧
xλ ̸≤D≥B

(T (D′))′


=

T (A1 ∧A2) ∧
∧

xλ≺A1∨A3

∧
xλ ̸≤D≥A1∧A2

(T (D′))′


∨

T (A2 ∧A3) ∧
∧

xλ≺A1∨A3

∧
xλ ̸≤D≥A2∧A3

(T (D′))′


∨

T (A1 ∧A3) ∧
∧

xλ≺A1∨A3

∧
xλ ̸≤D≥A1∧A3

(T (D′))′


∨

T (A1) ∧
∧

xλ≺A1∨A3

∧
xλ ̸≤D≥A1

(T (D′))′


∨

T (A3) ∧
∧

xλ≺A1∨A3

∧
xλ ̸≤D≥A3

(T (D′))′


∨

T (A1 ∨A3) ∧
∧

xλ≺A1∨A3

∧
xλ ̸≤D≥A1∨A3

(T (D′))′


= (0.8 ∧ 0.4) ∨ (0.6 ∧ 0.4) ∨ (0.6 ∧ 0.4) ∨ (0.8 ∧ 0.9) ∨ (0.6 ∧ 0.4) ∨ (0.6 ∧ 1)

= 0.8.
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