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Abstract. Economic and financial phenomena are highly complex and non-linear. However, surprisingly, in many
cases, these phenomena are accurately described by linear models – or, sometimes, by piecewise linear ones. In this
paper, we show that fuzzy techniques can explain the unexpected efficiency of linear and piecewise linear models:
namely, we show that a natural fuzzy-based precisiation of imprecise (“fuzzy”) expert knowledge often leads to
linear and piecewise linear models.

We show this by applying invariance ideas to analyze which membership functions, which fuzzy “and”-operations
(t-norms), and which fuzzy implication operations are most appropriate for applications to economics and finance.

We also discuss which expert-motivated nonlinear models should be used to get a more accurate description
of economic and financial phenomena: specifically, we show that a natural next step is to add cubic terms to
the linear (and piece-wise linear) expressions, and, in general, to consider polynomial (and piece-wise polynomial)
dependencies.
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1 Linear and Piecewise Linear Methods Are Surprisingly Efficient for De-
scribing Nonlinear Economic Phenomena: Formulation of the Problem

It is well known that economic and financial phenomena are very complex and non-linear. However, surpris-
ingly, many such phenomena are well described by linear models, such as the AutoRegressive-Moving-Average
model with eXogenous inputs model (ARMAX) [4, 5]:

qt =

p∑
i=1

φi · qt−i +
b∑

i=1

ηi · dt−i + εt +

q∑
i=1

θi · εt−i,

where qt is the value of an economic quantity at time t, dt is the value of the external quantity at time t, and
φi, ηi, and θi are constants. Here, εt are random variables εt = σt · zt, where zt is white noise with 0 mean
and standard deviation 1, and the dynamics of variances σ2

t is also described by a linear formula: namely, by
the Generalized AutoRegressive Conditional Heterosckedasticity (GARCH) model [3, 4, 5]:

σ2
t = α0 +

ℓ∑
i=1

βi · σ2
t−i +

k∑
i=1

αi · ε2t−i.
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Sometimes, to get a more adequate description of the corresponding economic and financial phenomena,
we need to use piecewise linear models, in which different linear models are used to describe different periods.

How can we explain this counter-intuitive success of linear and piecewise linear models in describing
non-linear phenomena?

2 Need to Use Expert Knowledge and Fuzzy Logic

Models come from experts. To explain this phenomenon, let us recall that while the parameters of the
models that describe real-world phenomena are tuned based on the observations, the models themselves come
from experts.

Experts usually start with knowledge formulated in imprecise (“fuzzy”) natural-language terms: for
example, they can say that if the federal bank interest rate increases, more funds move into bonds, away
from stocks. Once economists formulate such natural-language statements, other researchers precisiate these
statements by transforming them into precise models.

It is reasonable to use fuzzy logic. Precisiating imprecise expert knowledge – i.e., translating it from the
imprecise natural language to precise formulas – is exactly what fuzzy logic has been invented for [2, 6, 8, 9,
10, 11]. Fuzzy logic techniques have been tuned on numerous practical examples, they have many successful
applications. It is therefore reasonable to use these techniques to transform economic expert knowledge into
a precise model.

Expert knowledge is usually described in terms of natural-language if-then rules. We want to
describe the dependence of the future values y1, . . . , ym of the quantities of interest on the values x1, . . . , xn
of these and related quantities at present and in the past moments of time.

Expert knowledge about this dependence usually comes in the form of several if-then rules. Let us denote
the number of such rules by K.

Some of these rules enable us to directly describe the corresponding predictions, i.e., they provide an
explicit conclusion about the future values based on the current and past values. Other rules do not provide
such a direct prediction, but describe relations between future values, relations that help to make correct
predictions. For example, a rule may say that if in the future, there is a large increase in unemployment,
then this would lead to a large decrease in stock market value.

In general, each condition or conclusion of each of the rules is based:

• either on the value of one of the quantities xi or yj ,

• or on the value of the difference between the values of a quantity at two different moments of time (or,
more generally, on the difference between two quantities).

For example, a reasonable rule may say that if an interest rate in one country is much higher than the interest
rate in another one, then we will have a big outflow of capital into a country with a higher interest rate.

To simplify the description of the rules, let us introduce an alternative denotation of each unknown yj as
xn+j . In these terms, each of these rules k = 1, . . . ,K has thus the following if-then form

if Ak,1(uk,1) and . . . and Ak,nk
(uk,nk

) then Bk(vk),

where:

• Ak,j(uk,j) and Bk(vk) are imprecise properties like “small”, “medium”, etc.,

• each value uk,j is either one of the variables, i.e., xi(k,j) for some i(k, j), or the difference between two
variables xf(k,j) − xs(k,j); and
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• each value vk is either one of the variables, i.e., xi(k) for some i(k), or the difference between two
variables xf(k) − xs(k).

For example, one of the possible versions of the above rule about bonds corresponds to the case when:

• nk = 1,

• uk,1 is the increase in interest rates, i.e., the difference between the current and the previous interest
rates,

• vk is the amount of money moving into bonds, i.e., the difference between the future amount y and the
current ui investments in bonds,

• Ak,1 is “big”, and

• Bk is “large”.

Fuzzy logic technique: reminder. Fuzzy logic helps transform if-then rules of the above type into precise
formulas. The use of fuzzy logic starts with selecting membership functions µk,j(uk,j) and µk(vk) representing
imprecise terms Ak,j and Bk. Specifically, e.g., for each real number uk,j , the value µk,j(uk,j) ∈ [0, 1] is the
degree to which this number satisfies the property Ak,j (e.g., the degree to which uk,j is big).

Once we know the membership functions, then, for each combination of the values

(x1, . . . , xn, xn+1, . . . , xn+m) = (x1, . . . , xn, y1, . . . , ym),

we can describe the degree µk,j(uk,j) to which each of the conditions Ak,j(uk,j) is satisfied. We then need to
use these degrees to find a degree to which the entire condition

“Ak,1(uk,1) and . . . and Ak,nk
(uk,nk

)”

is satisfied. To compute this combined degree, we can use a fuzzy generalization of the “and” operation of
classical logic. Such generalizations are known as “and”-operations or t-norms f&(a1, a2, . . .). Once we have
selected a t-norm f&(a1, a2, . . .), then, for each combination (y1, . . . , ym) of future values, we can compute
the degree Ck(y1, . . . , ym) to which the condition of the k-th rule is satisfied as

Ck(y1, . . . , ym) = f&(µk,1(uk,1), . . . , µk,nk
(uk,nk

)). (1)

Similarly, we can compute the degree µk(vk) to which the conclusion Bk(vk) of the k-th rule is satisfied.
To find the degree Dk(y1, . . . , ym) to which the k-th rule itself is satisfied, we can then apply a fuzzy

implication operator f→(a, b) – a generalization of the implication operation of classical 2-valued logic –
to the degrees to which the condition and the conclusion are satisfied. As a result, for each combination
(y1, . . . , ym), we get the following formula for the degree Dk(y1, . . . , ym) to which the k-th rule is satisfied for
these values yj :

Dk(y1, . . . , ym) = f→(Ck(y1, . . . , ym), µk(vk)). (2)

We want to know to what degree D(y1, . . . , ym) all K rules are satisfied, i.e., to what degree the 1st rule is
satisfied and the 2nd rule is satisfied, etc. To find this degree, it is natural to again use the “and”-operation:

D(y1, . . . , ym) = f&(D1(y1, . . . , ym), . . . , DK(y1, . . . , ym)). (3)

Now, for each possible combination of future values y1, . . . , ym, we know the degree D(y1, . . . , ym) to which
these value yj are consistent with the known values x1, . . . , xn and with the expert rules. If we need to come
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up with a numerical prediction, it is reasonable to select the “most possible” combination (y1, . . . , ym), i.e.,
the value for which the corresponding degree D(y1, . . . , ym) is the largest possible:

D(y1, . . . , ym) → max
y1,...,ym

. (4)

To apply fuzzy logic technique, we need to select appropriate operations. As one can see from
the above description, to apply the fuzzy logic technique, we need to select appropriate “and”-operation, an
appropriate implication operation, and appropriate membership functions.

From the purely mathematical viewpoint, in each cases, there are many possible choices. Let us analyze
which of these choices are most appropriate for the analysis of economic and financial data.

3 Specifics of Economic and Financial Expert Knowledge

In many applications areas, there is a very small amount of best experts. For example, among all the surgeons
performing a certain kind of surgery, there are a few best ones; similarly, there are few doctors who are the
best in diagnosing a certain rare disease, etc. Since there are few of these experts, it is not possible to utilize
them in all relevant situations. In such cases, it is important to describe the expertise of each individual
expert as accurately as possible – so that others can use this expertise.

In economics and finance, the situation is different. There is no clear small group of best experts: at any
given moment of time, some financial and industrial leaders exhibit excellent results – only to be defeated by
competitors. However, while we cannot point to a single expert as the best, there is no doubt that financial
and economic leaders as a whole form a group with the desired expertise. In other words, in economics and
finance, it is not that important to accurately describe the opinion of each individual expert, it is much more
important to describe the opinion of the group of experts.

With this in mind, the best way to determine the corresponding membership functions is by polling: for
each statement S like “an interest rate increase of 4% is big”, we ask several (N) experts whether they believe

this statement to be true, and if N(S) of them agree that this statement is true, we take the ratio
N(S)

N
as

the degree µ(S) to which this statement is true.

Our objective is to find the value µ(S) as accurately as possible. It is known that in a poll, the more
people we ask, the more accurate is the resulting opinion. Thus, a natural way to improve the accuracy of
the poll is to ask more experts. However, there is a catch. When at first, we could only afford to poll N
people, we thus selected the top leaders in the field. Now that we add N ′ extra experts, these experts may
be too intimidated by the reputation of the original experts (like Warren Buffett) to voice their own opinions
– especially if the original super-experts disagreed between themselves. With the new experts mute, we still
have the same number N(S) of experts who agree with the statement S – but now we have to divide it
not by the original number N , but by the new number N + N ′. As a result, instead of the original value

µ(S) =
N(S)

N
, we get a new value µ′(S) =

N(S)

N +N ′ . The values µ′(S) and µ(S) are related by a simple

formula µ′(S) = c · µ(S), where c =
N

N +N ′ .

Thus, for the exact same opinion, by selecting two different numbers of experts N and N+N ′, we get two
numerically different membership functions: µ(S) and c · µ(S). These two membership functions represent
the same expert opinion and are, thus, equivalent in some reasonable sense. It is therefore reasonable to
select “and”-operations which are consistent with this equivalence.
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4 Selecting an Appropriate “And”-Operation

An “and”-operation f&(a, a
′) transform the degrees of belief a and a′ in statements S and S′ into a degree of

belief in a combined statement S&S′. Consistency means that if we simply re-scale each degree, i.e., replace
a with an equivalent degree c · a and replace a′ with an equivalent degree c′ · a′, for some constants c and c′,
then he resulting degrees f&(c · a, c′ · a′) should also be equivalent to the original degrees, i.e., we should have
f&(c · a, c′ · a′) = C · f&(a, a′) for some constant C depending on c and c′. Thus, we arrive at the following
definition.

Definition 4.1. We say that a t-norm f&(a, b) is consistent with polling if for every c and c′ there exists a
value C(c, c′) for which, for all a and a′, we have

f&(c · a, c′ · a′) = C(c, c′) · f&(a, a′). (3)

It turns out that this requirement uniquely determines the “and”-operation:

Proposition 4.2. The only t-norm which is consistent with polling is the product f&(a, a
′) = a · a′.

Proof. Let us first consider the case when c′ = 1. In this case, the formula (3) takes the form

f&(c · a, a′) = C(c) · f&(a, a′). (4)

Similarly, for any c′, we have

f&(c
′ · c · a, a′) = C(c′) · f&(c · a, a′) = C(c′) · C(c) · f&(a, a′). (5)

One the other hand, substituting c′ · c into the formula (4), we get

f&(c
′ · c · a, a′) = C(c′ · c) · f&(a, a′). (6)

By comparing the right-hand sides of the formulas (5) and (6), we conclude that for every c and c′, we have

C(c′ · c) = C(c′) · C(c). (7)

A t-norm is increasing in each of the variables, so from (4), we can conclude that the function C(c) is
increasing. It is known (see, e.g., [1]) that every increasing solution to the functional equation (7) has the
form C(c) = cα for some α > 0. Substituting this expression into the formula (4), we get

f&(c · a, a′) = cα · f&(a, a′). (8)

In particular, for a = 1, we get

f&(c, a
′) = cα · f&(1, a′) = cα · a′. (9)

The t-norm is symmetric, so we have cα · a′ = c · (a′)α, hence α = 1 and f&(c, a
′) = c · a′. The proposition is

proven. □
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5 Selecting an Appropriate Implication Operation

An implication is naturally related to an “and”-operation. Namely, an implication A → B means that if we
add it to A, we get B. If we get a statement weaker than the implication to A, then we not necessarily get
B. Thus, implication can be defined as the supremum of all such “below-implication” values, i.e., as

f→(a, b) = max{c : f&(a, c) ≤ b}.

For the case when the “and”-operation is a product, we get

f→(a, b) =
b

a
when a > b, else f→(a, b) = 1. (10)

This is the implication operation that we will use in this paper.

6 Selecting Appropriate Membership Functions

Idea. As we have mentioned earlier, one of the main features of expert knowledge in economics and finance is
that, in contrast to many other areas of knowledge, here we need to combine the opinions of several experts.
It is therefore reasonable to select a family of membership functions in such a way that not only the opinion of
each expert can be described by a membership function from this family, but also that the “and”-combination
of these opinions should be described by a function from this same family.

Since we have decided to express “and” as a product, this means that our family F of membership
functions should be closed under multiplication:

if µ1(x) ∈ F and µ2(x) ∈ F , then µ1(x) · µ2(x) ∈ F .

Analysis of this idea. To analyze the situation, it is convenient to use the fact that the logarithm of the
product is equal to the sum of the logarithms. Thus, if instead of the original family of functions, we consider

their logarithms f(x)
def
= ln(µ(x)), we can conclude that the family L of all such logarithms should be closed

under addition.

In the computer, at any given moment of time, we can only store values of finitely many parameters.
Thus, it is reasonable to conclude that the linear space generated by the set L can also described by finitely
many parameters, i.e., is finite-dimensional.

Scale-invariance. The numerical values of the economics- and finance-related quantities xi and y depend
on the choice of the unit. For example, if, instead of dollars, we start measuring these quantities in euros, we
get different numerical values. In general, if we replace a measuring unit with another unit which is λ times

larger, then the original numerical value x of the corresponding quantity is replaced by a new value x′ =
x

λ
.

Under this re-scaling, each original membership function µ(x) takes the form µ′(x′) = µ(x) = µ(λ ·x′). It
is reasonable to require that this re-scaling transform membership functions from the selected family F into
functions from the same family, i.e., that the family F (and thus, the family L of the logarithms of functions
µ ∈ F ) be invariant with respect to this re-scaling.

Definition 6.1. Let n be an arbitrary integer. We say that a finite-dimensional linear space L of analytical

functions is scale-invariant if for every function f ∈ L and for every λ > 0, the function fλ(x)
def
= f(λ · x)

also belongs to the family L.
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Proposition 6.2. (See [7]) For every scale-invariant finite-dimensional linear space L of analytical functions,
every element f ∈ L is a polynomial.

Proof. Let L be a scale-invariant finite-dimensional linear space F of analytical functions, and let f(x) be
a function from this family L.

By definition, an analytical function f(x) is an infinite sum of monomials m(x) of the type ak · xk:

f(x) = a0 + a1 · x+ a2 · x2 + . . .

If we multiply x by λ, then the value of this monomial is multiplied by λk:

f(λ · x) = a0 + λ · a1 · x+ λ2 · a2 · x2 + . . .

Some of the coefficients ai may be zeros – if the original expansion has no monomials of the corresponding
order. Let k0 be the first index for which ak0 ̸= 0. Then,

f(x) = ak0 · xk0 + ak0+1 · xk0+1 + . . .

Since the family L is scale-invariant, it also contains the function fλ(x) = f(λ · x). At this re-scaling, each
term ak · xk is multiplied by λk; thus, we get

fλ(x) = λk0 · ak0 · xk0 + λk0+1 · ak0+1 · xk0+1 + . . .

Since L is a linear space, it also contains a function

λ−k0 · fλ(x) = ak0 · xk0 + λ · ak0+1 · xk0+1 + . . .

Since L is finite-dimensional, it is closed under turning to a limit. In the limit λ → 0, we conclude that the
term ak0 · xk0 also belongs to the family L.

Since L is a linear space, this means that the difference

f(x)− ak0 · xk0 = ak0+1 · xk0+1 + . . .

also belongs to L. If we denote, by k1, the first index k1 > k0 for which the term ak1 ̸= 0, then we can
similarly conclude that the corresponding term ak1 · xk1 also belongs to the family L, etc.

We can therefore conclude that for every index k for which term ak ̸= 0, the corresponding term ak · xk
also belongs to the family L.

Monomials of different total order are linearly independent. Thus, if there were infinitely many non-zero
coefficients ak ̸= 0, we would have infinitely many linearly independent function in the family L – which
contradicts to our assumption that the family L is a finite-dimensional linear space.

So, in the expansion of the function f(x), there are only finitely many non-zero terms. Hence, the function
f(x) is a sum of finitely many monomials – i.e., a polynomial.

The proposition is proven. □
Conclusion about membership functions. So, we conclude that the logarithms of the membership
functions are polynomials, and thus, each membership function has the form µ(x) = exp(P (x)) for an
appropriate polynomial P (x).

The simplest possible membership functions are Gaussian. We need to make sure that µ(x) ∈ [0, 1]
for all x; this excludes linear functions P (x) = a + b · x, since for them exp(P (x)) tends to ∞ either when
x → ∞ (for b > 0) or when x → −∞ (for b < 0). Thus, the simplest possible membership functions of the
type µ(x) = exp(P (x)) are the functions corresponding to quadratic polynomials P (x).
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Each quadratic polynomial P (x) can be represented as C · (x− a)2 + b for some C, a, and b. Thus,

µ(x) = exp(P (x)) = exp(b) · exp
(
C · (x− a)2

)
.

The requirement that µ(x) ∈ [0, 1] for all x implies that C < 0, i.e., that C = −c for some c > 0. Also, we
have argued earlier that the degrees of belief (and thus, membership functions) can only be defined modulo
a multiplicative constant. So, we can safely conclude that

µ(x) = exp
(
−c · (x− a)2

)
,

i.e., that all the membership functions that we consider are Gaussian.

7 Justification of Piecewise Linear Dependence

Derivation. Let us show that when the “and”-operation is a product, the implication operation comes from
the product, and all membership functions are Gaussian, the standard fuzzy logic procedure (1)–(4) leads to
piecewise linear dependencies. This will complete our justification.

Indeed, we assume that all membership functions are Gaussian, i.e., that

µk,j(uk,j) = exp
(
−ck,j · (uk,j − ak,j)

2
)

and

µk(vk) = exp
(
−ck · (vk − ak)

2
)

for all k and j. Since the “and”-operation is the product, we get

Ck(y1, . . . , ym) = f&(µk,1(uk,1), . . . , µk,n(uk,nk
)) =

µk,1(uk,1) · . . . · µk,n(uk,nk
) =

exp
(
−ck,1 · (uk,1 − ak,1)

2
)
· . . . · exp

(
−ck,nk

· (uk,nk
− ak,nk

)2
)
=

exp

−
nk∑
j=1

ck,j · (uk,j − ak,j)
2

 .

We can now use the formula (10) for the implication to find the degree Dk(y1, . . . , ym). Specifically, when
the degree Ck(y1, . . . , ym) is smaller than or equal to the degree

µk(vk) = exp
(
−ck · (vk − ak)

2
)
,

i.e., equivalently, when
nk∑
j=1

ck,j · (uk,j − ak,j)
2 ≥ ck · (vk − ak)

2, (11)

then Dk(y1, . . . , ym) = 1.

On the other hand, when Ck(y1, . . . , ym) > µk(vk), i.e., equivalently, when

nk∑
j=1

ck,j · (uk,j − ak,j)
2 < ck · (vk − ak)

2, (12)
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then

Dk(y1, . . . , ym) =
ck(vk)

Ck(y1, . . . , ym)
=

exp

−

ck · (vk − ak)
2 −

nk∑
j=1

ck,j · (uk,j − ak,j)
2

 . (13)

The resulting expression (3) for the maximized degree thus has the form

D(y1, . . . , ym) = D1(y1, . . . , ym) · . . . ·DK(y1, . . . , ym) =

∏
k∈K

exp

−

ck · (vk − ak)
2 −

nk∑
j=1

ck,j · (uk,j − ak,j)
2

 , (14)

where K is the set of all the indices k for which the inequality (12) is satisfied.

For each combination of inputs (x1, . . . , xn), the maximum in (4) is attained for the values (y1, . . . , ym)
characterized by some set K ⊆ {1, . . . ,K}.

A finite set {1, . . . ,K} has finitely many possible subsets K. We can therefore divide the set of all possible
combinations of inputs (x1, . . . , xn) into finitely many regions corresponding to different subsets K. In each of
these regions, the predicted values y1, . . . , ym can be determined by maximizing the corresponding expression
(14). Since the exponent of the sum is equal to the product of the exponents, we can conclude that

D(y1, . . . , ym) =

exp

−
∑
k∈K

ck · (vk − ak)
2 −

nk∑
j=1

ck,j · (uk,j − ak,j)
2

 . (15)

The function exp(−z) is monotonically decreasing, so maximizing the expression (15) is equivalent to mini-
mizing the expression

E
def
=

∑
k∈K

ck · (vk − ak)
2 −

nk∑
j=1

ck,j · (uk,j − ak,j)
2

 . (16)

To minimize this expression, we can differentiating it with respect to each of the unknowns y1, . . . , ym and
equate each of these derivatives to 0. Each of the expressions uk,j and vk is linear in terms of xi and yj ; thus,

each equation
∂E

∂yj
= 0 is linear in terms of xi and yj . Thus, to find m unknown, we have a system of m

linear equations y1, . . . , ym that linearly include xi in the right-hand sides, i.e., equations

m∑
j′=1

Aj,j′ · yj′ = Bj +

n∑
i=1

Cj,i · xi, j = 1, . . . ,m, (17)

for some constants Aj,j′ , Bj , and Cj,i. In matrix form, we can rewrite this as Ay = B + Cx, hence y =
A−1(B + Cx) = A−1B +A−1Cx.

Conclusion. Thus, on each of finitely many regions, we get linear dependence of the predicted quantities yj
on the inputs x1, . . . , xm, i.e., we indeed get a piecewise linear dependence.
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8 Discussion: Linear and Piecewise Linear Models, What Next?

Our justification of piecewise linear models is based on selecting, among all membership functions which are
consistent with our assumptions, the simplest ones – which turned out to be Gaussian.

If it turns out that in some situations, the resulting piecewise linear models are not sufficiently accurate,
then a natural idea is to use the next simplest class of corresponding membership functions. In general, we
have membership functions of the type µ(x) = exp(P (x)) for some polynomial P (x). In our analysis, we
selected the simplest case when these polynomials are quadratic (linear polynomials are not possible since
then we will not have µ(P (x)) ∈ [0, 1] for all x).

To get a more adequate description, we therefore need to consider polynomials of higher order. Cubic
polynomials are not possible (for the same reason as linear ones), so the next simplest case is the case of
fourth order polynomials. For second order polynomials, our analysis led us to a system of m equations each
of which is linear in terms of the inputs xi and the predicted values yj . For fourth order polynomials, a
similar analysis will lead to a system of m equations each of which is cubic in terms of the inputs xi and the
predicted values yj .

Since the analysis of expert knowledge naturally leads to such cubic systems, it may be a good idea, in
situations when we seek better prediction accuracy, to start adding cubic terms to the known piecewise linear
models.
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