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Abstract. This paper proposes an application of a Takagi-Sugeno fuzzy model to the prediction of complex mass
transfer behavior in smart toilet bidet systems. The model is constructed through the integration of fuzzy logic
theory, nonlinear autoregressive moving average exogenous input models, neural networks, and data clustering
algorithms. To develop the model for estimating the air quality of the smart toilet-bidet system, many datasets are
collected from a smart toilet bidet model equipped with an automatic odor/bacteria suction system using Sulfur
hexafluoride (SF6) gas. Many case studies were carried out as a function of the suction flow rate, suction angle, the
number of suction holes, and suction hole size. The inputs for training the fuzzy model are the size, number, and
angles of suction holes, whereas its output is the undesirable gas concentration. The trained fuzzy model is tested
using different datasets. Modeling and testing results show the effectiveness of the fuzzy model in predicting the
gas concentration of the toilet bowl. The proposed fuzzy model is expected to be useful in the implementation of
smart toilet bowl systems in the near future.
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1 Introduction

The indoor air quality has been reported to be several times worse than that of outdoor air ([1], [4]). Several
factors such as dust, tobacco smoke, and microorganisms contribute to poor indoor air quality; In particular,
microorganisms can proliferate in high relative humidity indoors or emerge from feces in toilets Studies by
several researchers ([6], [16], [7], [11]) have shown that many countries have legislated a minimum requirement
for indoor air quality. For instance, in Singapore, the regulated value for bacteria is lower than 500 CFU/m3.

Numerous studies have been conducted to find a means to eliminate unwanted odor and bacteria from
bathrooms. In particular, most methodologies have been related to designing a more effective ventilation
system. Chung et al.[5] conducted numerical simulations on the airflow and contaminant particles in the
bathroom by using floor exhaust ventilation. Tung et al.[14] used a mock bathroom to verify the concentration
of tracer gas at several points in a typical ceiling ventilation system. Their results indicated that the odor
removal efficiency improved with an increase in the flow rate for ventilation and a reduction in the distance
between the toilet and the exhaust vent. Best et al.[3] conducted a study on toilet lids, in which they measured
aerosolized bacteria from a contaminated toilet. In their study, it was found that the bacteria could rise up
to 25 cm above the toilet seat, which would cause contamination of the entire bathroom (Figure 1).

However, the condition of contamination improves rapidly with the closing of the toilet bowl lid. Never-
theless, intractable problems apparently occur when the toilet bowl lid is opened and closed. Bacteria keep
rising continuously and contaminating the bathroom (Figure 2).
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Figure 1: Ejection of toilet bacteria via flushing of toilet bowl

Figure 2: Contamination of infectious bacteria in a bathroom
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In addition, users must unfortunately continue to suffer from the smell of unpleasant odors. Hence, Seo
and Park[10] proposed the application of an odor/bacteria suction system to a toilet bowl to prevent unwanted
elements such as odor and bacteria from emerging out of toilets. They verified through numerical studies
that when the system is used in a toilet seat, it is effective in removing odors and bacteria from feces.

However, further research needs to be directed at developing real-time odor/bacteria forecasting algo-
rithms so as to effectively implement robust automatic control systems to the smart toilet bowl system. The
forecasting of odor/bacteria in toilet bowls is a highly complex issue that has not yet been definitely resolved,
owing to the highly nonlinear and uncertain nature of the concerned environment. With this in mind, in
the present study, an intelligent model is proposed for predicting the complex behavior of the smart toilet
bowl system. The model is developed through the integration of nonlinear autoregressive moving average
exogenous input models, the TakagiSugeno fuzzy model, the backpropagation algorithm, and the partition
grid algorithm. Surprisingly, an effective fuzzy model for toilet bowls equipped with bidet systems has not
yet been developed conceptually or thoroughly evaluated empirically. This work would fill some of these
gaps in the literature and provides an alternative design framework for modeling a smart toilet bowl-bidet
system. To develop the model for estimating the air quality of the smart toilet-bidet system, many datasets
are collected from a smart toilet bidet system using Sulfur hexafluoride (SF6) gas. Many case studies were
carried out as a function of the suction flow rate, suction angle, the number of suction holes, and suction hole
size. The results showed that the model effectively predicts the air flow and tracer gas concentration around
the toilet.

The rest of this paper is organized as follows. Section 2 introduces the proposed fuzzy model. Section
3 describes the experimental protocol. Section 4 discusses the modeling process and its results. Section 5
presents the concluding remarks.

2 Proposed fuzzy model

The numerical model used in this study for modeling the behavior of the smart toilet bowl-bidet system
is a modified TakagiSugeno fuzzy model. The antecedent parameters of the TakagiSugeno fuzzy model are
optimized using the backpropagation learning algorithm, and the consequent parameters are determined via
the weighted least-squares estimator.

2.1 Autoregressive moving average exogenous fuzzy model

In 1985, Takagi and Sugeno proposed a fuzzy model that is described as fuzzy IF-THEN rules such that a
nonlinear system can be represented by local linear input-output relations ([12]). The local dynamics of the
fuzzy inference system proposed in this study takes the form of

Rj : IF u1 is p1 and u2 is p2 and ... and ui is pi

THEN ŷj(k) =

n1∑
i=1

ajiy(k − i) +

n2∑
i=1

bj
iu(k − i− n4) +

n3∑
i=1

cjiϵ(k − i− n5).
(1)

where Rj is the jth rule; ui is the ith premise variable; pji is the associated parameter; k is the integer value;
and n1, n2, and n3 are the number of delay steps in the output, input, and the disturbance terms, respectively.
n3 and n4 are the discrete dead-times, and ai, bi, and ci are the coefficient matrices to be estimated. The
output y(k), input u(k), and the associated scheduling vector are expressed in Eqs. (2)-(5).

u ∈ {y(k − 1), ..., y(k − n1), u(k − 1), ...u(k − n2 − n3), ..., ϵ(k − 1), ...ϵ(k − n4 − n5)} (2)
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The linear jth fuzzy model at the operating point u can be integrated into a linear time-varying dynamic
model as

ŷ(k) =

n1∑
i=1

Nr∑
j=1

∏no
i=1ω

j
i (ui)∑Nr

j=1

∏no
i=1ω

j
i (ui)

ajiy(k − i)+

n2∑
i=1

Nr∑
j=1

∏no
i=1ω

j
i (ui)∑Nr

j=1

∏no
i=1ω

j
i (ui)

bj
iu(k − i− n4)+

n3∑
i=1

Nr∑
j=1

∏no
i=1ω

j
i (ui)∑Nr

j=1

∏no
i=1ω

j
i (ui)

cjiϵ(k − i− n5)

(3)

where ωj
i (ui) is the membership function (MF) of ui, and Nr is the number of local linear models. In this

study, the parameters of the MF are optimized using the backpropagation algorithm, whereas ai, bi, ci and
are estimated via the weighted least-squares estimator.

2.2 Parameter optimization

To determine the antecedent parameters of the proposed model, the model can be formulated as a minimum
error problem such that

Minimize e =
1

2
{ŷ(k)− ỹ(k)}2 (4)

The problem becomes optimization of the parameters of the MF ωj
i (ui) such that e is minimized using

the learning algorithms:

mj
i (k) = mj

i (k − 1)− η1
∂(k)

∂(ωj
i )
|ωj

i

= mj
i (k − 1)− 2η1

∏no
i=1 ω

j
i (ui(k − 1))(ŷ(k − 1)− ỹ(k − 1))∑Nr

j=1

∏no
i=1 ω

j
i (ui(k − 1))

ui(k − 1)−mj
i (k − 1)

σj
i (k − 1)

2 (5)

for the mean values and

σj
i (k) = σj

i (k − 1)− η2
∂(e(k))

∂(ωj
i )

|σj
i = σj

i (k − 1)

= σj
i (k − 1)− 2η2

∏no
i=1 ω

j
i (ui(k − 1))(ŷ(k − 1)− ỹ(k − 1))∑Nr

j=1

∏no
i=1 ω

j
i (ui(k − 1))

(ŷj(k − 1)− ŷ(k − 1))(ui(k − 1)−mj
i (k − 1))2

(σj
i (k − 1))3

(6)

for the standard deviations, where η1 and η2 are the learning-rate parameters. When the parameters of the
fuzzy antecedent part are determined, the final output of the fuzzy model is expressed as a linear combination
of the polynomial parameters. Hence, the consequent parameters can be identified using the least-squares
method

θj = (H(k)TωjH(k))−1H(k)Tωjỹ(k), (7)
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Figure 3: Configuration of proposed algorithm

where

H(k) = [y(k − 1)T , ...,y(k − n1)
T , ...

u(k − 1)T , ...,u(k − n2 − n3)
T , ...

ϵ(k − 1)T , ...ϵ(k − n4 − n5)
T ]

(8)

θj = [a1,j , ...,an,j ,b1,j , ...,bm,j , c1,j , ..., cl,j ]. (9)

Here, ỹ(k) denotes the measured data, and ωj is the weighting factor. Figure 3 shows the basic configu-
ration in which the proposed system is implemented.

2.3 Proposed algorithm

The proposed algorithm is implemented in the following steps (as shown in Figure 4).

Step 1: Air quality data are collected from the laboratory.

Step 2: The digital signal processing technique is applied to the selected dataset of input-output signals
in order to filter out noisy signals that are undesirable data.

Step 3: Based on the processed signals, the grid partition clustering algorithm is applied and the results
are used as the initial values of the premise part of the TakagiSugeno fuzzy model.

Step 4: Once the antecedent MFs are initialized using the grid partition clustering algorithm, the mean
and standard deviation values of the MFs are optimized using the backpropagation algorithm.

Step 5: Once the values of the premise parameters are fixed, the consequent parameters are optimized
using the weighted least-squares algorithm.

Step 6: The performance of the fuzzy model is estimated via various evaluation indices: percent error
in peak, bias, mean square error, root mean square error (RMS), and coefficient of determination. If the
prediction performance is not satisfactory (i.e., the errors are larger than the allowable error limits), the
modeling procedure goes back to Step 4. Note that Step 4 to Step 6 are repeated until the errors converge
to desirable values. For example, the number of MFs can be adjusted. The target errors are determined by
users.

Step 7: When the model estimates comply with the specified boundaries of errors, the model is tested
using other datasets that are not used for the training process. In this study, the specified boundaries of
errors are determined qualitatively by visual inspection of the time series as well as quantitatively by means
of an evaluation index such as R2. If the prediction is not satisfactory, the procedure goes back to Step 3. If
it is satisfactory, the algorithm stops.



Fuzzy Model of Smart Toilet Bowl-Bidet System-TFSS-Vol.2, No.1-(2023) 49

Figure 4: Flowchart of parameter optimization by proposed model
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Figure 5: Experimental chamber

It should be noted that trial and error is required for Step 4 to Step 7 [9]. When it is difficult to develop an
effective model between Step 4 and Step 7, returning to Step 2 and/or Step 3 is recommended. Based on var-
ious combinations of the input-output signals, it is sometimes possible to improve the modeling performance.
It should also be noted that the computational costs of calculating the output increase significantly when the
number of input variables increases, thereby making a high-dimensional fuzzy model unfeasible. However, it
will also make it difficult to develop an effective controller, based on the identified model ([13], [15]). It is
often counterproductive to consider a high number of input variables in the prediction model for a restricted
purpose ([8]). Hence, it is desirable to carefully conduct the correlation analysis for the input-output signal
datasets.

3 Experimental study

A new suction system, which was installed at the bottom of the toilet seat, was tested to evaluate its
performance. Figure 5 shows a 5m3 chamber equipped with a ventilation system. Figure 6 shows the
suction toilet system in the chamber. The ventilation system in the chamber serves the purpose of ensuring
appropriate control of the level of the background gas. A schematic of the experimental setup is shown in
Figure 7.

As shown in Figure 8, an experimental toilet seat with a suction system was placed on a toilet bowl. At
the initial stage, 20 equidistant suction holes were created, and the sizes of the holes (hereafter referred to as
suction tips) were 33, 44, 55, 66, 77, and 88 mm2. Each suction tip size was tested separately by replacing
them. Suction was achieved via a vacuum pump (DOA-P704-AC, GAST Manufacturing, Inc., Benton Harbor,
MI), and the air flow rates were in the range of 420 LPM. SF6 was used as the trace gas, and its flow rate
was 1 LPM; it was released at the bottom of the toilet. To ensure uniform spreading of the gas, foam blocks
were placed in the toilet bowl as the gas was released out of a tube with an inner diameter of 2 mm.

The sampling point of the gas was the center of the toilet seat, and its elevation was the same as that
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Figure 6: Toilet bowl-bidet system in environmental chamber

Figure 7: Schematic of experimental setup
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Figure 8: Suction system at bottom of toilet seat

of the seat. A photoacoustic gas analyzer (model 1312, CAI Inc., Orange, CA) was used to determine the
concentration of the gas.

4 Simulation results

4.1 Parameter setting

Details of the selected experimental case studies are presented in Table 1. The evaluation was performed in
the order of the suction tip angle, suction tip size, number of suction tips, and flow rate. It should be noted
that a suction tip angle of 90 refers to the suction surface facing the bottom.

The gas concentration at the release point of the tracer was set as approximately 660 ppm. The input
and output signals for training are shown in Figure 9.

4.2 Performance evaluation

Bennett et al. [2] outlined various methods for assessing the performance of environmental models, including
both conventional and innovative approaches, in a systematic way.

4.2.1 Visual performance analysis

The performance of the fuzzy models can be judged by visual inspection (i.e., viewing patterns in data). It is
easy to detect under-modeled or unmodeled patterns and capture the overall behavior of the model without
performing extensive quantitative analysis. In many problems, a simple visual inspection of the models is
sufficient [2].

Figure 10 and Figure 11 show the prediction of the model; specifically, the training and the testing
results are shown in Figure 10 and Figure 11, respectively. In both figures, the dotted lines represent the
experimental data points whereas the solid red lines indicate the predicted values. As is seen from the figures,
there is a strong agreement between the data and the model predictions; in other words, the fuzzy model is
highly effective in predicting the behavior of the smart toilet bowl-bidet system. Figure 12 and Figure 13
show the residual error plots for the proposed model. The residual errors of the model appear randomly;
i.e., no systematic errors are found in the models. For instance, a high density of positive/negative values is
not found in the plots, which indicates that the model does not tend to overestimate or underestimate the
measured values [2].
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Table 1: Experimental cases

Case Suction Tip Size(mm) # of Suction Tips Suction Tip Angle (o) Suction Flow Rate(LPM)

1 4 by 4 2 90 16

2 4 by 4 2 45 16

3 3 by 3 2 90 16

4 5 by 5 2 90 16

5 6 by 6 2 90 16

6 7 by 7 2 90 16

7 8 by 8 2 90 16

8 4 by 4 4 90 16

9 4 by 4 6 90 16

10 4 by 4 4 90 4

11 4 by 4 4 90 8

12 4 by 4 4 90 12

13 4 by 4 4 90 20

Figure 9: Set of input and output signals for training
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Figure 10: Prediction performance: training results

Figure 11: Prediction performance: validation results
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Figure 12: Residual plot: training

Figure 13: Residual plot: validation
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Figure 14: QQ plot: training

Figure 14 and Figure 15 show the quantile-quantile (QQ) plots of the fuzzy models and measured data. If
the model and data have the same distribution, the QQ plot will be linear [2]. From Figure 14 and Figure 15,
it is seen that all the QQ plots are closely linear, which means that both the models and the datasets originate
from the same distribution, as shown in Figure 16 and Figure 17.

4.2.2 Quantitative analysis

In order to quantify the modeling error, several evaluation indices were used, as presented in Table 2. In Table
2,ŷ is the forecasting value, ỹ denotes the data measured in the laboratory, and is the number of data points.
As the first evaluation index, the percent error in peak (J1) was used to determine whether the fuzzy models
could generate a data range similar to observed data. As the second and third evaluation indices, the bias
(J2, the mean of the residuals) and the mean square error (J3) were adopted to determine whether the fuzzy
models tend to overestimate and underestimate the measured data, respectively. The RMSE (J4) was also
calculated to express the error metric in the unit of mg/m2. To determine how well the fuzzy models capture
the variance in the measured data, the coefficient of determination (J5) was also used as an evaluation index
[2].

As shown in Table 2, the proposed fuzzy model is effective in forecasting the complex behavior of air
quality variations. According to all the indices, the proposed model demonstrates superior performance. The
index J1 in the proposed model is negative because the fuzzy model overestimates the overall data values
slightly. In all the cases, the level of validation error is higher than the level of training error, as indicated
by all the indices. However, the occurrence of both positive and negative errors in J2 could result in a value
close to zero, and thus, indices J3 and J4 account for this issue. The RMSE provides a metric in the unit of
ppm/m2, yielding values between 0.207 ppm/m2 and 1.246 ppm/m2, for all the training and testing models
subject to clean data. Until the noise level of 5 percent,the coefficients of determination (J5) for the proposed
fuzzy model range from 0.956 to 1, indicating a strong agreement between the model and data. It should
be noted that the coefficients of determination of the fuzzy model are 1 for the training data and 0.993 for
the testing data. The coefficients of determination of the fuzzy model under random noises range from 0.623
to 0.980. Results of simulation using noise-contaminated data show that the proposed fuzzy model has a
fairly robust performance against the measurement noises; however, the model performance degrades when
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Figure 15: QQ plot: validation

Figure 16: Data distribution: training
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Figure 17: Data distribution: validation

Table 2: Performance evaluation of proposed fuzzy model

Index Equation Training Testing
Clean data Noise 1% Noise 5% Noise 10% Noise 20%

J1
max(ỹi)−max(ŷi)

max(ỹi)
∗ 100 -0.514 -10.207 1.584 -4.740 -69.061 -12.216

J2
1
Nt

∑Nt
i=1(ỹ − ŷ) 1.524e-6 -0.226 0.536 -0.151 1.338 1.211

J3
1
Nt

∑Nt
i=1(ỹ − ŷ)2 0.043 1.553 4.677 10.36 38.223 88.743

J4

√
1
Nt

∑Nt
i=1(ỹ − ŷ)2 0.207 1.246 2.162 3.219 6.182 9.420

J5 1−
1
Nt

∑Nt
i=1(ỹ − ŷ)2

1
Nt

∑Nt
i=1(ȳ − ŷ)2

1 0.993 0.980 0.956 0.838 0.623
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contaminated data are directly used up to a noise level of 20 percent without filtering the undesirable features
from the raw data.

5 Conclusion

In this paper, a novel fuzzy model was proposed for predicting the complex behavior of a bathroom toilet
bowl equipped with a smart bidet system. To develop the proposed model, numerous datasets were collected
from a smart toilet bowl-bidet system in an environment-controlled chamber. The size, number, and angles
of the suction tip were considered as the input variables, whereas the tracer gas concentration was used as
the output data. It was demonstrated through extensive testing that the proposed fuzzy model is effective
in modeling the migration of the gas concentration. The proposed prediction model is expected to be useful
for the implementation of a real-time control system for optimal smart bidet systems.
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