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Abstract 

The behavior of the earth-dam body as a soil structure made of cohesive soil in the core and non-cohesive soil as 

the core supports, including water interaction upstream through earthquake upon multi-line constitutive 

equations, is the aim of this paper. A multi-plane mechanism-based approach is successfully employed for 

assigning post-liquefaction displacement of earth-dam structures. This approach is derived from total stress 

procedures with two major advantages:1) the triggering and post-liquefaction responses have been multi-lined 

into one analysis.2) the modeling of post-liquefaction element behavior is greatly improved.To sum up, a multi-

plane-based framework is employed. The strength effects on integrated sampling planes and the resultant of this 

simulated multi-lined behavior are implemented for each finite element gauss point. This multi-plane-based 

model can also predict the effects of induced and inherent anisotropy plus the rotation of principal stress/strain 

axes through the plastic behavior of both cohesive and non-cohesive soils.The approach is presented through the 

simulation of the case history as the response of the lower San Fernando dam to the 1971 San Fernando 

earthquake. The magnitude and pattern of the predicted displacements are shown to be in good agreement with 

the measured values. 
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1. Introduction 

During the last decade, constitutive modeling of porous media such as soils has been the subject of numerous 

investigations, primarily because of the increasing awareness of the complexity of the loading conditions to which soil 

structures are subjected and the corresponding need for more accurate analysis for prediction of the safety of such 

structures. The parallel development of more powerful and efficient numerical analysis methods has motivated and 

allowed the use of sophisticated constitutive models beyond the linear or simple non-linear elastic-plastic constitutive 

laws utilized in the early stages [1-24]. 

Most of the models proposed are based on the theory of elastic-plasticity, incorporating different yield criteria and flow 

and hardening rules. Strain hardening models have been proposed according to various isotropic, kinematic, or mixed 

hardening rules. These models usually deal with a single or direction of principal axes of either stress or strain, or both 

have been observed in many tests. A model based on the invariant of stress/strain tensors, therefore, can not cope with 

the real behavior of soil under a complex loading program. 

The task of representing the overall stress tensor in terms of micro-level stresses and the condition, number, and 

magnitude of contact forces has long been the aim of numerous researchers [25-28]. A multilaminate model for granular 

material was developed by Sadrnejad (1989) [29-30]. 

For a granular material such as soil that supports the overall applied loads through contact friction and cohesion, the 

overall mechanical response ideally may be described based on the micro-mechanical behavior of grains 

interconnections. Naturally, this requires the description of the overall stress, characterization of cohesivity and fabric, 

representation of kinematics, development of local rate constitutive relations, and evaluation of the overall differential 

constitutive relations in the local quantities. 

Predicting soil behavior under cyclic loading is a major problem in geomechanics. The stress-strain relation of soil 

under cyclic loading depends on many objects; therefore, this task without mathematical models is impossible. An 

integrated planes-based model capable of predicting the behavior of both cohesive and non-cohesive soils based on 
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sliding mechanisms and the elastic behavior of particles has been presented. The capability of the model to predict the 

behavior of soil under arbitrary stress paths has been examined [29-31]. The rotation of principal stress axes and 

induced anisotropy are included rationally without any additional hypotheses. The volumetric strain in drained tests, as 

a state quantity in strains that should possess an essence of stress path independence by definition, is a unique quantity 

determined when the origin and the destination of stress paths are given. 

 

2. Basic assumptions and discussions 

Multilaminate framework, by defining the small continuum structural units as an assemblage of particles and voids that 

fill infinite spaces between the sampling planes, has appropriately justified the contribution of interconnection forces to 

overall macro-mechanics. Plastic deformations are assumed to occur due to sliding and separation/closing of the 

boundaries, and elastic deformations are the overall responses of structural unit bodies. Therefore, the overall 

deformation of any small part of the medium is composed of total elastic response and an appropriate summation of 

sliding, separation/closing phenomenon under the current effective normal and shear stresses on sampling planes. 

 

3.The constitutive equations  

The classical decomposition of strain increments under the concept of elastoplastic in elastic and plastic parts are 

schematically written as follows: 

pe ddd    (1) 

The increment of elastic strain (de
) is related to the increments of effective stress (d ) by: 

 d]D[d 1ee    (2) 

Where [D
e
]

-1
 is the elastic compliance matrix, usually assumed as linear, and is obtained as follows: 

)(G)G
3

2
K(D jkiljlikklij

e
ijkl    (3) 

Where K and G are bulk and the shear modulus, respectively. 

For the soil mass, the overall stress-strain increments relation, to obtain plastic strain increments (dp
), is expressed as: 

 dCd pp   (4) 

Where C
p
 is the plastic compliance matrix, all effects of plastic behavior are expected to be included in C

p
. To find 

out C
p
, the constitutive equations for a typical slip plane must be considered in calculations. Consequently, the 

appropriate summation of all provided compliance matrices corresponding to considered slip planes yields overall C
p
; 

therefore, strain increment at each stress increment is calculated as follows: 





n

1i

p
i

T
i

p d]L[C]L[w
n

1
d    (5) 

L and L are transformation matrices for strain and stresses, respectively, and n is the number of planes. 

4. Constitutive equations for a sampling plane 

A sampling plane is defined as a boundary surface which is a contacting surface between two structural units of 

polyhedral blocks. These structural units are parts of a heterogeneous continuum, and for simplicity, they are defined as 

a completely homogeneous and isotropic material. Therefore, all heterogeneity's behavior is supposed to appear in the 

inelastic behavior of corresponding slip planes. Figure 1 shows these defined planes (say 13). This number may be 

chosen as any number; however, based on some numerical experiences, 13 is found to fit a rationally justified and 

possess enough power to show any distribution through the material. The direction cosines and weighted coefficients 



Analytical and Numerical Methods in Mechanical Design 

 

41 

 

carried out and employed using the numerical integration of the rule for calculation of stress/strain/compliance tensor of 

each plane are presented in Table 1. 

 

Fig. 1. Definition of 13 planes 

 

Table 1. Cosines of the normal axis and the weight coefficients for numerical integration 

Plane 

No 

Normal Axis 
wi 

li mi ni 

1 
3

1  
3

1  
3

1  
840

27
 

2 
3

1  
3

1
  

3

1  
840

27
 

3 
3

1
  

3

1  
3

1  
840

27
 

4 
3

1
  

3

1
  

3

1  
840

27
 

5 
2

1  
2

1  0 
840

32
 

6 
2

1
  

2

1  0 
840

32
 

7 
2

1  0 
2

1  
840

32
 

8 
2

1
  0  

2

1
 

840

32
 

9 0  
2

1
  

2

1
 

840

32
 

10 0  
2

1
 

2

1
 

840

32
 

11 1  0  0  
840

40
 

12 0  1  0  
840

40
 

13 0  0  1  
840

40
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4.1. Yield criterion 

In this constitutive formulation, the yield criterion is defined by the absolute ratio of shear stress (i) to the normal 

effective stress (ni) on i
th

 sampling plane. The simplest form of yield function, i.e., a straight line on t versus n space, 

is adopted. As the ratio n increases, the yield surface, represented by the straight line, rotates anti-clock-wise due to 

hardening and approaches the Mohr-Columbus failure line. Finally, failure on the corresponding plane takes place. 

The equation of yield function is formulated as follows: 

niiiiiniii C),,(F    (6) 

Where i=tan(i) is a hardening parameter and is assumed as a hyperbolic function of plastic shear strain on 

the i
th

 plane, i is the slope of the yield line, and Ci is the cohesivity of soil. 

An elastic domain is considered to provide elastic behavior of cohesionless material whenever the stress path direction 

changes. This domain, as shown in Figure 2, is small and negligible. 

 

Fig. 2. Functions in n 

Therefore, the value of e for all soil grains is assumed to be the same. However, to consider the cohesivity of soil at the 

start of the stress increment, another elastic domain between the lines corresponding to =±C has been defined. This 

domain also is shown in Figure 2. Consequently, the behavior of soil for <Ci is supposed to be elastic. 

 

4.2. Plastic potential function 

The potential plastic function is stated in terms of i and i for the t versus n space as follows: 

niiiiiniii C),,(F    (7) 

Where c is the slope of the critical state line and nic is the value of effective normal stress in the i
th

 plane when i=C'i. 

Typical presentations of this function are shown in Figure 2. The gradient of this function represents contraction and 

dilatant behavior in the ranges: 

0.0inic          (contractant behavior) (8) 

inic                 (dilatant behavior) (9) 

Derivative of this function is found as:  

T
icii },0.1{/    (10) 

Where i is the hardening parameter or the slope of the yield line in i
th

 plane. 
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Dilatancy is positive if i>c and negative if i>c. On the critical state line i=c, and there is no volumetric plastic 

strain for the soils predominantly composed of clay, a yield function the same as potential can be employed with the 

associated flow rule. In this case, a volumetric hardening rule besides shear hardening can present volumetric change 

during plasticity. 

In the theory of plastic flow, consistency condition is necessary for a yield criterion to be satisfied as long as the 

material is in a plastic state. Mathematically, this condition is stated as follows: 

0.0=dKi}K/F{+d}/F{ T
iii

T
ii    (11) 

Where in the first loading process Ki=
p

i and i is plastic strain on the i
th

 plane. This relation can also be expressed in 

another form as: 

In the first loading process, Ki=
p

i and i are the plastic strain on the i
th

 plane. This relation can also be expressed in 

another form: 

iii
T

iipi
p

i d}/{}/F{}H/1{    (12) 

Where Hpi is defined as the hardening modulus of i plane and is obtained as follows: 

}K/{}K/F{H ii
T

iipi    (13) 

therefore, 

i
p

i
p

i dCd    (14) 

where: 

}/{}/F{}H/1{C ii
T

iipi
p

i    (15) 

C
p
i is a 2×2 matrix and, as a whole, represents the plastic resistance corresponding to the i

th
 active plane in plasticity and 

must be summed up as the contribution of this plane with the others after transforming into a 6×6 size in global 

coordinate. Accordingly, the conceptual numerical integration of a multi-laminate framework presents the following 

summation for computing C
p
. 





n

1i

p
i

T
i

p LCLw4C   (16) 

Where wi is the weight coefficient, C
p
 is the global plastic compliance matrix corresponding to a single point in the 

medium, and L is the transformation matrix for the corresponding plane. n is the employed number of planes. 

 

4.3. Hardening rule 

This model employed an isotropic plastic shear hardening rule for each plane. A simple function simulates the best 

variation of this property during the plastic flow, which has been represented as a hyperbolic function as follows: 

ii

fi
i

KA

)tan(K







  (17) 

Where, Ki=(pt
i-

pt
oi), f is the peak internal frictional angle, and Ai is a soil parameter. pt

i and pt
oi are current and initial 

values of plastic shear strain on the i
th

 plane. At first, loading pt
oi is equal to zero, and its value is updated at each 

change of load increment sign. i starts from e, grows with the plastic shear strain, and slowly approaches the failure 

line. However, as stated, dense soils it has to rotate back towards the critical state line slowly. 
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4.4. First loading 

The behavior of non-cohesive soil is assumed to be elastic in a small zone, as shown in Figure 2. This conforms with a 

small i value equal to tan(e). 

A simple form of variation of i is a hyperbolic function that has been considered. However, the range of variation 

of i is between -tan(f) and +tan(f). The following relation is an equation used for the first loading. 

oipt
oi

pt
ii

oif
pt
oi

pt
i

i
)(A

))tan(m()(





 




  (18) 

Ai is a material constant, and for the first loading, it is equal to Ao, where Ao is the initial value of this 

parameter. oi and pt
oi are the values of i and pt

i when the last change in the stress path direction has occurred. For the 

first loading pt
oi and oi are equal to zero. m for first loading is equal to +1. The value of Ao is found by trial and error 

by comparing computer results with experimental results of triaxial compression tests. 

For cohesive soil, the same hardening functions are employed except within the domain Ci where the soil behavior 

is assumed to be elastic. Therefore, as the shear stress on any plane exceeds this value, the value of i can be obtained 

by the same equations presented. 

 

4.5. Un-loading 

The value of A must be changed to obtain comparable theoretical and experimental results. Another reason for this is 

the different shape of the hysteresis loop when cyclic loading takes place at different positions. Value A of obtained 

from numerical experiments is given by: 

Equations (19) and (20) are valid for unloading, and m must be equal to -1 for the unloading process. The value 

of i approaches -tan(f) while pt
i is large enough compared to Ai. 

pt
oioi 075.0AA   (19) 

 

4.6. Re-loading 

The variation of i for the reloading process is similar to unloading, although the limit value of i is +tan(f).m is equal 

to +1, and the value of A must change. The new value of Ai is shown as follows : 

Where pt
oi and oi are the values of pt

i and i at the start of the unloading process. pt
oi and oi are similar values at the 

start of the reloading process. 

}0.1)(/)){(tan()(A oioioif
pt
oi

pt
oii    (20) 

Finally, this form of variation for i as a unique equation at each process can produce hysteresis energy loops with 

different widths. The higher the absolute values of pt
oi and oi the higher the width of hysteresis energy loops produced. 

Finally, this form of variation for i as a unique equation at each process can produce hysteresis energy loops with 

different widths. The higher the absolute values of pt
oi and oi, the higher the width of hysteresis energy loops 

produced. 

 

5. The model response under undrained conditions 

The principle of effective stress for a saturated soil element is stated in macro scale and incremental form as follows: 

dUmdd    (21) 
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Where  and  are representatives of total and effective stresses vectors, respectively, m is the constant operator vector 

equal to {1,1,1,0,0,0}, U is the excess pore water pressure, and d is used for representing small increments. 

It can also be assumed that in a fully undrained case, the skeleton volume change is precisely equal to the change in 

pore water volume. Equation (22) can be rewritten as: 

d}m{KdU T
f   (22) 

Where K is obtained as follows [32]: 

swf K

1

K

1

K

1 
  (23) 

Kw is the bulk modulus of water, and  is the initial porosity. Retaining the elastoplastic constitutive law, it is presented 

as follows: 

 dDd ep   (24) 

 dDd ept   (25) 

Where D
ep

 and D
ept

 are effective and total stress-strain matrices. Therefore, 

}m{}m{KDD T
f

epept   (26) 

where, 

1epep ]C[D   (27) 

peep CCC   (28) 

C
e
, C

p
, and C

ep
 are compliance elasticity, plasticity, and elastoplastic matrices. 

According to the incremental algorithm, C
ep

 computed in the previous step can be used for the current step; therefore, 

the solution will not remain indeterminate. Consequently, D
ept

 can be employed to calculate strain increments upon total 

stress increment tensor. 

The general dynamic force equilibrium equation is written as follows: 

iiiij CMf    (29) 

Where ij is the stress tensor, fi is external force, M and C are mass and damping, i and j stand for coordinate axes, 

and  is the displacement. Upon use of the integration rule and Green's theory, this equation can be presented as 

follows: 

0fCMdVBT     (30) 

where, 

fdVfNdSfN b
T

s
T    (31) 

MdVNNT   (32) 

CdVNNc T   (33) 

Where  and c are density and damping, respectively. Equation (30) yields: 

0=fQU-K+C+M   (34) 

where, 

  dVBDBK epT
 (35) 

  dVmNBQ U
T

 (36) 
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Conceptually, Q is a matrix presenting equilibrium and continuity interaction.  

To employ a simple numerical solution of equation (34), it can be written in a general form as follows: 

0fK   (37) 

where, 

  dVBBK3dVBDBK T
f

epT  (38) 

 

6. Accumulation of pore pressure  

Usually, there are some hydrostatic pore water pressures in saturated soil. However, pore water pressure can be divided 

into static and excessive, and pore spaces are assumed to be saturated with water. The static water pressure is accounted 

for by subtracting the buoyancy force from the weight of particles. 

The excessive pore water pressure is obtained by assuming water as an elastic medium without shear resistance. Under 

cyclic loading, a hysteresis loop of dissipated energy takes place. Consequently, while plastic strain takes place, some 

volumetric strain shall be obtained in the soil and water. The difference between these two strain values, multiplied by 

the bulk modulus of the soil and water mixture, can present a pore water pressure increment. 

 

7. San Fernando dam 

This dam, located near Los Angeles, failed by a 6.6 Richter earthquake on 9th-Feb.-1971 [33-35] the complete failure 

shape of this dam is shown in Figure 3-a, and the base acceleration time history of this earthquake is shown in Figure 3-

b. The following parameters are obtained according to the calibration of model results with two test results on non-

cohesive and cohesive samples, as shown in Figures 4-a and 4-b. For cohesive soil used in the core: 

E=‎‎ KPa, =0.3, =2‎  , c=0.98tan, C'=‎ KPa, A=0.001, =15 KN/m
3
. 

For non-cohesive soil used in the dam body except the core: 

E=‎‎ KPa, =0.377, =32.62, c=0.75tan, C'=0, A=0.001‎ =16.69 KN/m
3
. 

The dam's height is 50m, the length is 275m, and the water height at the time of the earthquake was 36m. The aim of 

this computation is elastoplastic behavior during 12 seconds of earthquake base acceleration time history. 

 

 

 

Fig. 3-a. San Fernando Dam before and after liquefaction 

liquefied zone 
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Fig. 3-b. Baseline acceleration of San Fernando earthquake input 

 

 

 

Fig. 4-a. Calibration of the test results of dam shell materials and numerical model in two spaces: 

v: and q: 
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Fig. 4-b. Calibration of the test results of dam core materials and numerical model in two spaces: 

v: and q: 

 

 

 

8. Numerical model 

A three-dimensional mesh is developed in three vertical 5m thick layers, as shown in Figure 5-a. Figure 5-b shows the 

mid-layer mesh, including the core. The employed time increment is 0.02 seconds, much shorter than a quarter of the 

minor earthquake period. The deformed shape of the mid-layer at starting time of failure is shown in Figure 6-a. Pore 

water pressure and effective mean stress contours at the starting time of instability are shown in Figures 6-b and 6-c, 

respectively. The zone, including the highest pore water pressure and negligible effective mean stress, is the center 

where liquefaction was taken place [36]. Comparing these Figures with Figure 3 leads to imagine what happens at the 

start of instability. At this stage, the liquefied zone started to move out of the dam body, and consequently, the upper 

part slid down. The post-seismic motion may have sometimes forced the slid particles to settle down and deform more. 

This judgment agrees with the final dam failure shape shown in Figure 3. The multilaminate model and finite element 

developed program can identify two forms of failure based on the shear and tension of defined sampling planes. The 
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identified plastic shear strain value for a failed plane is %15, and for tension is %5. Figure 6-d shows the failed gauss 

points to introduce the global form of collapsed band. 

 

 

Fig. 5-a. 3D modeling of San Fernando Dam and numbering of eight-node elements 

 

 

Fig. 5-b. The number of elements and characteristics of the middle layer in the modeling of the San Fernando dam 

 

 

Fig. 6-a. Deformation of dam elements after an earthquake 
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Fig. 6-b. Pore water pressure contours 

 

 

Fig. 6-c. Effective stress contours 

 

 

Fig. 6-d. Shear failure paths in the dam 

 

To clarify details of the first sheared plane (plane 6, gauss point 4, element 75), the stress path, strain stress, shear stress 

history, and normal stress history are shown in Figures 7-a to 7-d, respectively. Through the elements represented 

cohesive soil in the core, plane number 2 of gauss point 8 of element number 87 tended to fail upon hydraulic fracture. 

The stress path, strain-stress, shear stress history, and the normal stress history of this plane are shown in Figures 8-a to 

8-d, respectively. Figures 8-e to 8-g are the time histories for this plane's shear stress, normal stress, and pore water 

pressure. Also, to show the model's ability, Figures 9-a to 9-c show the plastic elements in the initial stages of loading, 

the liquefaction areas during the earthquake, and the tensile failure area in the dam core, respectively. 
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Fig. 7-a. Shear stress-Normal stress diagram in element number 75, Gauss point 4, page number 6 

 

Fig. 7-b. Shear stress-Shear strain diagram in element number 75, Gauss point 4, page number 6 

 

Fig. 7-c. Time history of normal stress in element number 75, Gauss point 4, page number 6 
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Fig. 7-d. Time history of shear stress in element number 75, Gauss point 4, page number 6 

 
Fig. 8-a. Shear stress-Normal stress diagram in element number 87, Gauss point 8, page number 2 

 
Fig. 8-b. Shear stress-Shear strain diagram in element number 87, Gauss point 8, page number 2 

 
Fig. 8-c. Time history of shear stress in element number 87, Gauss point 8, page number 2 
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Fig. 8-d. Time history of normal stress in element number 87, Gauss point 8, page number 2 

 

Fig. 8-e. Time history of shear strain in element number 87, Gauss point 8, page number 2 

 
Fig. 8-f. Time history of normal strain in element number 87, Gauss point 8, page number 2 
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Fig. 8-g. Time history of pore water pressure in element number 87, Gauss point 8, page number 2 

 

 

Fig. 9-a. Plastic elements in the initial stages of loading 

 

 

Fig. 9-b. Liquefaction areas during earthquakes 

 

 
Fig. 9-c. Tensile failure zone in the core of the dam 

 

9. Conclusions 

A unique model capable of predicting the behavior of both non-cohesive and cohesive, either in saturated or dry 

conditions, based on sliding mechanisms, elastic behavior of particles, and a higher effective hydrostatic pressure due to 

liquefaction in a non-cohesive and hydraulic fracture in cohesive soil has been presented. The concept of a multi-

laminate framework was applied successfully in the dynamic analysis of three-dimensional soil structures. This is 
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achieved using simplified, applicable, effective, and easily understandable relations between micro and macro scales. 

These relations demonstrate an easy way to handle any heterogeneous material property as well as the mechanical 

behavior of materials. 

This model can solve a three-dimensional plasticity problem with a relatively simple theory based on the 

phenomenological description of two-dimensional plastic deformation and kinematic hardening of materials. This is 

achieved in such a way that the application of some difficult tasks, such as induced anisotropy and rotation of principal 

stress and strain axes where there is no coaxial taking place during plastic flow, are out of constitutive relations. 

Accordingly, the sampling plane constitutive formulations provide convenient means to classify loading events, 

generate history rules and formulate independent evolution rules for local variables. 

The behavior of soil has also been modeled upon cyclic loading leading to liquefaction, hydraulic fracture, and failure 

instability based on a semi-microscopic concept very close to the reality of particle movement in soils. Therefore, the 

solution to any complexities involved in the change of strength due to the build-up of pore water pressure and volume 

change of the soil skeleton can be obtained and presented. 
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