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Abstract 
Rotating beams have been considerably appealing to engineers and designers of complex structures i.e. aircraft’s propeller 
and windmill turbines. In this paper, a new flexibility-based method is proposed for the dynamic analysis of rotating non-
prismatic Euler-Bernoulli beams. The flexibility basis of the method ensures the true satisfaction of equilibrium equations at 
any interior point of the elements. Following structural/mechanical principles, exact shape functions and consequently exact 
structural matrices i.e. consistent mass, geometric stiffness and flexural stiffness matrices are derived in terms of special so-
called “Basic Displacement Functions”. The method is considered as the logical extension of conventional finite element 
method. Being straightforward formulated, the method can be incorporated into any standard finite element programs. The 
method poses no restrictions on either type of cross-section or variation of cross-sectional dimensions. The effects of 
rotational speed parameter and taper ratio on the variation of natural frequencies are studied and the results compare well with 
the other existing methods in the technical literature. 
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1. Introduction 
 

Free vibration analysis of non-rotating tapered 
Euler-Bernoulli beams have has been investigated by 
many researches researchers [1-4]. The free analysis 
of rotating tapered beams have received great 
attention from designers of rotating machineries 
such as windmills, aircraft propellers due to its 
significant effect on their performance especially in 
presence of time-dependent loads. Obtaining natural 
frequencies of the system as an important component 
of free vibration analysis provides worthy insight for 
the designers in order to understand the response of 
the structural systems to dynamic loads.The presence 
of variable coefficients in the governing differential 
equation of motion introduced by varying cross-
sectional area, moment of inertia and centrifugal 
forces is the troublesome point in the analysis of 
rotating tapered beams; hence it seems that 
derivation of a closed-form solution is impossible. 
Through years, many approximatenumerical 
techniques have been proposed such as dynamic 
stiffness method [5-7], finite element method [8-9]  
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and series solution of governing equation of motion 
[10, 11]. Understanding the fact that Hermite shape 
functions do not satisfy the homogeneous part of the 
static governing equation, Gunda and Ganguli [12] 
proposed new rational shape functions which satisfy 
the homogeneous static part. They [12] verified their 
method for both static and free vibration analyses of 
tapered beams. Using Frobenius method, Banerjee et 
al. [7] derived the dynamic stiffness matrix for non-
prismatic beams whose cross-sectional area and 
moment of inertia vary respectively along beam 
length with arbitrary integer powers n and n+2. 
Considering the similar assumptions for cross-
sectional area and moment of inertia as in Ref. [7], 
Ozgumus and Kaya [13] carried out free vibration 
analysis for tapered rotating beams using differential 
transform method (DTM). Mei [14] determined 
natural frequencies of rotating prismatic beam via 
application of DTM to the governing equation of 
motion. 
In this paper, new set of functions namely Basic 
Displacement Functions (BDFs) are introduced 
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which hold mechanical interpretations. Considering 
basic structural/mechanical theorems, it is shown 
that exact shape functions are expressed in terms of 
BDFs; thus exact structural matrices are evaluated. 
The effects of centrifugal forces are introduced into 
the formulation by adding the geometric stiffness 
matrix to the flexural one. This method has been 
previously employed for the analysis of non-rotating 
tapered members by the first author [15-16]. The 
method is considered as the logical extension of the 
conventional finite elements method and can be 
easily incorporated into the existing finite element 
programs. 

2. Basic Displacement Functions 
In the following, four BDFs are introduced as, 

1b : Transverse displacement of the left node due to 
a unit load at distance x when the beam is clamped at 
right as shown in Figure (1-a). 

1b : Bending rotation angle of the left node due to a 
unit load at distance x when the beam is clamped at 
right as shown in Figure (1-b). 

2b : Transverse displacement of the right node due 
to a unit load at distance x when the beam is 
clamped at left as shown in Figure (1-c). 

2b : Bending rotation angle of the right node due to 
a unit load at distance x when the beam is clamped at 
left as shown in Figure (1-d). 
Due to the structural definitions of BDFs, it is easily 
verified that each BDFs could be given via 
application of basic structural theorems such as the 
energy methods [17].  
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where l and EI are length of the element and the 
flexural rigidity, respectively. On the basis of the 
reciprocal theorem [17], BDFs can equivalently be 
interpreted mechanically as, 

1b : Transverse displacement at distance x due to a 
unit load at the left node of a beam clamped at right 
as shown in Figure (2-a). 

1b : Angle of rotation at distance x due to a unit 
moment at the left node of a beam clamped at right 
as shown in Figure (2-b). 

2b : Transverse displacement at distance x due to a 
unit load at the right node of a beam clamped at left 
as shown in Figure (2-c). 

2b : Angle of rotation at distance x due to a unit 
moment at the right node of a beam clamped at left 
as shown in Figure (2-d). 
 
Considering the equivalent definitions of BDFs, it is 
observed that both the first and second derivatives of 
BDFs have mechanical interpretations, as well, 
where they are respectively defined as the slope and 
curvature of the corresponding beam. The 
derivatives of BDFs are given in Table 1. 
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(a)                                                                                      (b)

                                                     

(c)                                                                                     (d) 

Figure 1.Mechanical illustrations of BDFs 
 

 

 

 
 

Figure 2.Equivalent mechanical illustrations of BDFs 
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Table 1.First and second derivatives of BDFs 

Type of BDF First Derivative Second Derivative 
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In which 2211 F,F are nodal flexibility matrices of the 
first and second node, respectively. 
 
3. Application of BDFs 
Assume a general beam shown in Figure 3. In order 
to obtain the nodal reactions, the original structural 
system is decomposed into isostatic structures i.e. 
cantilever beams and the boundary conditions are 
imposed for the released support. 
Scrutinizing the definitions of equivalent BDFs, one 
can easily evaluate the nodal flexibility matrices as 
The nodal displacements of point (2) in Figure (3-b) 
can be elegantly computed in terms of BDFs as, 
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In which ( )q x is the external distributed transverse 
loading. Apparently the nodal displacements of point 
(2) in Figure (3-c) are given as, 
 

( )
2 2

2 2

cw V
M

   
   

   
22F

                                     (8) 
  

Imposing the boundary conditions at point (2) 
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The nodal reactions are obtained by substituting Eqs. 
(7, 8) in Eq. (9) 
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Similarly the nodal reactions of point (1) are 
obtained. 
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Based on structural analysis, nodal equivalent forces 
are the negative of nodal reactions; thus 
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Comparing Eq. (12) with the relation proposed by 
finite element method 
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The shape functions N are obtained as, 
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Once shape functions are derived, the structural 
matrices can be evaluated as [1], 
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Where GKM, and K are respectively consistent 
mass, geometric stiffness and flexural stiffness 
matrices.  and A are respectively mass per unit 

volume and cross-sectional area. xF is the axial force 
i.e. centrifugal force which is given by 
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where Ω and L are respectively the rotational speed 
and whole length of the beam. 
 
 
 
 

4. Numerical Examples and Discussion 
The proposed method is employed to determine the 
natural frequencies of a beam whose cross-sectional 
area and moment of inertia vary respectively as, 
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Where A0 and I0 are respectively cross-sectional 
area and moment of inertia at the origin and c is the 
taper ratio. The following dimensionless parameters 
namely rotational speed parameter η and 
dimensionless natural frequency μ are introduced to 
make comparisons with the literature. 
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The effect of rotational speed parameter on the 
variation of natural frequencies for a tapered beam 
with taper ratio c = 0.5 is tabulated in Table 2. As 
expected, the natural frequencies increase with the 
rotational speed due to the stiffening effect of 
centrifugal force. 
In Table 3, the natural frequencies are given for 
different values of taper ratio. The natural 
frequencies except for the first mode decrease with 
the taper ratio due to the softening effect caused by 
the decrease in cross-sectional area and moment of 
inertia. 
 
 
 

 
 

 
Figure 3.Decomposing the beam into two isostatic systems 
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Table 2 Effect of rotational speed on variation of dimensionless natural frequencies 

η 

  Taper Ratio=0.5      

 First Mode   Second Mode   Third Mode   Fourth Mode   Fifth Mode 

 Present Ref. [7]  Present Ref. [7]  Present Ref. [7]  Present Ref. [7]  Present Ref. [7] 

0  3.8216 3.82379  18.3073 18.3173  47.25 47.2648  90.4873 90.4505  148.294 148.002 

1  3.9845 3.98661  18.464 18.474  47.4024 47.4173  90.6407 90.6039  148.448 148.156 

2  4.4347 4.4368  18.9267 18.9366  47.8567 47.8717  91.099 91.0625  148.91 148.619 

3  5.0906 5.09267  19.6741 19.6839  48.6041 48.619  91.8574 91.8216  149.675 149.386 

4  5.8767 5.87877  20.6754 20.6851  49.6306 49.6456  92.908 92.873  150.74 150.454 

5  6.7412 6.7434  21.8957 21.9053  50.9187 50.9338  94.2405 94.2064  152.098 151.814 

6  7.6529 7.65514  23.2997 23.3093  52.4481 52.4632  95.8421 95.809  153.739 153.46 

7  8.5932 8.59557  24.8552 23.3093  54.1972 54.2124  97.6986 97.6666  155.656 155.38 

8  9.5514 9.55396  26.5342 24.8647  56.1442 56.1595  99.7945 99.7638  157.835 157.564 

9  10.5212 10.5239  28.3132 28.3227  58.268 58.2833  102.114 102.084  160.267 160.001 

10   11.4988 11.5015   30.1733 30.1827   60.5486 60.5639   104.64 104.612   162.939 162.677 
 

Table 3 Effect of taper ratio on variation of dimensionless natural frequencies 

Taper Ratio 

  η=5 

 First Mode  Second Mode  Third Mode 

 Present Ref. [7]  Present Ref. [7]  Present Ref. [7] 

0.1  6.4891 6.49115  24.7685 24.7805  62.4880 62.5113 

0.2  6.5370 6.53913  24.0847 24.0961  59.7289 59.7504 

0.3  6.5931 6.59525  23.3797 23.3906  56.8916 56.9112 

0.4  6.6599 6.66206  22.6510 22.6612  53.9615 53.9789 

0.5  6.7412 6.7434  21.8957 21.9053  50.9187 50.9338 

0.6  6.8432 6.84537  21.1118 21.1207  47.7356 47.7478 

0.7  6.9762 6.97848  20.3004 20.3086  44.3720 44.3805 

0.8  7.1604 7.16281  19.4777 19.4848  40.7701 40.7725 

0.9   7.4411 7.44359  18.7364 18.7412  36.8803 36.8667 
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5. Conclusions 
New shape functions are proposed for the analysis of 
rotating tapered beams which are obtained in terms 
of special structural functions namely BDFs. The 
superiority of the present method lies in proposing a 
mechanical solution rather than a mathematical one. 
The structural essence of BDFs let us obtain them 
using unit load method. Although BDFs are obtained 
on the basis of static deformations, it is observed that 
the method could be used in free vibration analysis 
and acceptable results could be expected even with a 
coarse mesh. 
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