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This study aims to investigate the effects of geometric imperfections on buckling of thin cylindrical shells due to global shear. To this end, 
more than 320 finite element models of cylindrical shells with different diameter to thickness ratios were prepared. Random imperfections 
with different amplitudes were applied to numerical models. The results revealed that global buckling of cylindrical shells are susceptible to 
imperfection patterns. It was also shown that Yamaki’s expression can be considered as upper band for plastic shear buckling of thin 
cylindrical shells. 
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1.  Introduction 

 
Cylindrical shells are common components of 

industrial plants such as oil refineries and petrochemical 
plants. Pressure vessels, liquid storage tanks, bins, and 
silos are some examples of shell structures. During the 
past decades, several cylindrical shells were damaged due 
to the extreme loads such as tornados, explosions and 
earthquakes [1-3]. Performance of shell structures during 
the past events showed that shell buckling is the most 
common failure mode of thin walled cylindrical shells. 
Although there is not a unique border between thin and 
thick cylindrical shells, thin shells usually have the radius 
to thickness ratio of 100 to 2000 [4]. Since 1900s, several 
analytical and experimental studies have been performed 
on buckling of cylindrical shells [5-10]. There is a wide 
scatter among the results of these studies. Buckling of thin 
shells is highly dependent on boundary conditions, shell 
imperfections, geometric specifications, etc. [4]. The wide 
scatter of the results of researches in the last decades is 
due to the fact that some of these parameters are random 
quantities. For this reason Arabocz [11] studied the 
buckling of shells with random imperfections due to axial 
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compression and calculated the buckling stress of shells 
by means of reliability theory. Most of the research 
programs have focused on buckling of cylindrical shells 
due to axial compressive loads. In this study shear 
buckling of thin cylindrical shells with random 
imperfections have been taken into account.  
 
2.  Shear Buckling of Cylindrical Shells 
 

A horizontal load applied to a vertical cylindrical shell 
is termed as transverse shear or global shear. In thin 
cylindrical shells, global shear may cause buckling. Since 
prebuckling deformations are not axisymmetric, shear 
buckling is more complex than buckling due to the axial 
loads [4]. For the sake of simplicity, practical engineers 
usually link shear buckling to a simpler buckling mode 
torsional buckling. Results of previous studies showed 
that this simplification provides a reasonably accurate 
prediction [12, 13] (See Fig. 1).   
In order to calculate the elastic critical shear stress the 
following formula can be used [14]: 
 

𝜏𝜏𝑒𝑒 = 4.82√1+0.0239𝜔𝜔3

𝜔𝜔2
𝐸𝐸𝐸𝐸
𝑟𝑟

                               (1) 
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In which E, t, and r stand for Modulus of elasticity, shell 
thickness and radius respectively. The parameter ω can be 
calculated as follows: 

𝜔𝜔 = 𝐿𝐿
√𝑟𝑟𝐸𝐸

                                                       (1a) 
In the above relation L is the height of the cylinder. Hence 
global transverse shear load (𝑄𝑄𝑒𝑒) can be calculated as 
follows: 
𝑄𝑄𝑒𝑒 = 𝜋𝜋𝑟𝑟𝐸𝐸𝜏𝜏𝑒𝑒                                                  (2) 
In order to calculate the global plastic buckling shear 
force (Qp

1
𝑄𝑄𝑝𝑝 2 = 1

𝑄𝑄𝑒𝑒2 + 1
𝑄𝑄𝑦𝑦 2                                           (3) 

), Yamaki‘s expression can be used as follows 
[12]: 

In which the global shear force at yield can be calculated 
as follows: 
𝑄𝑄𝑦𝑦 = 𝜋𝜋𝑟𝑟𝐸𝐸 𝜎𝜎𝑦𝑦

√3
                                                        (3a) 

Where 𝜎𝜎𝑦𝑦  denotes the yield stress of the shell. 
It is worth mentioning that the above mentioned 
expressions are related to perfect cylindrical shells. 
 

 
Fig. 1. Elastic global shear and torsional buckling [4]. 

 
3. Numerical Analysis 

 
In order to study the global shear buckling of thin 

walled cylindrical shells nonlinear numerical analyses 
have been conducted. To this end, ANSYS multi-purpose 
FE code was used [15].  Four node Shell181 elements 
with three degrees of freedom at each node were used to 
model cylindrical shells (See Fig. 2). The elements were 
capable of considering material nonlinearity and large 
deformations. A bilinear elastic-plastic model was 
considered for modeling material properties of cylindrical 
shell. The yield stress of steel material was assumed to be 
240 MPa.  

 
Fig 2. Specification of shell elements 

 
 
3.1. Specifications of Cylindrical Shells 

 
Three categories of cylindrical shells of the same 

height (H=14.75m) and different diameters (D=12, 15 and 
17.5m) were modeled. For each category three different 
shell thicknesses (t=15, 20 and 25mm) were considered. 
For each cylindrical shell at least 15 different 
imperfection patterns with two imperfection ratios (w/t=1, 
1.5) were randomly considered. Herein w is the maximum 
size of the geometric imperfection. For each model a 
perfect cylinder (w/t=0) was modeled too. In other words, 
327 different cylindrical shells were modeled (See table 
1). It deserves mentioning that the boundary conditions of 
the shells were fixed at the bottom and free at top of the 
shell. 

 
Table 1. Specifications of the models 

 
Model 
name 

Diameter 
(m) 

Thickness 
(mm) 

Number of 
imperfection 

patterns 
C1-1 
C1-2 
C1-3 
C2-1 
C2-2 
C2-3 
C3-1 
C3-2 
C3-3 

10 
10 
10 
15 
15 
15 

17.5 
17.5 
17.5 

 

15 
20 
25 
15 
20 
25 
15 
20 
25 

 

40 
40 
40 
30 
30 
30 
36 
36 
36 

 
 
 

3.2. Loading Pattern: 
 

In order to observe post buckling path of the models, 
displacement control analyses were performed. To model 
global shear on cylindrical shells incremental 
displacements were horizontally applied to the top of the 
shells. It is worth mentioning that none of the cylindrical 
shells were pressurized.  
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4.  Results 
 

The global shear buckling loads of the cylindrical 
shells versus diameter to thickness ratio (D/t) are 
presented in Fig. 3. As indicated in this figure, there is no 
meaningful relationship between global shear buckling 
loads and the diameter to thickness ratio (D/t).  On the 
other hand, there is a scatter among the results of 
numerical analyses for each cylinder which is related to 
the shell imperfection. The average buckling load and 
standard deviation of each set of models are presented in 
table 2. In order to obtain dimensionless shear buckling 
load, results of numerical analyses were normalized to 
plastic buckling force obtained from Yamaki’s 
expression.  
 

 
 

Fig. 3. Shear buckling loads of different cylindrical shells 
 

 
 

Table 2. Average buckling loads of the cylindrical shells 
 

D/t 
Average 
buckling 

load, Q (kN) 

Standard  
Deviation 

400 
500 
600 
666 
700 
750 
875 
1000 
1167 
 

124.9 
94.9 

154.3 
67.1 

163.9 
113 
126 
818 
886 

21.74 
14.50 
35.47 
12.21 
56.35 
28.68 
33.71 
19.25 
51.40 

 
 
Plots of dimensionless shear buckling loads for all the 

models are presented in Figures 4 to 6. As indicated in 
these figures, dimensionless buckling load for different 
models varies between o.3 and 0.8. In other words results 
of this study seem to indicate that Yamaki’s relation is not 
conservative for imperfect shells. As shown in Figures 4 
to 6, variation of dimensionless buckling load  

 
 

byimperfection pattern is much greater than that by 
imperfection amplitude  (w/t). In other words, unlike axial 
buckling of cylindrical shells, global shear buckling is not 
very susceptible to imperfection amplitude.   
 
 
 

 
 
 

 
 
 

 
 
Fig 4. Dimensionless shear buckling loads for C1-1, C1-2 and C1-3 
 
 
 
 
 
 
 
 

w/t=1.0 w/t=1.5 

w/t=1.0 w/t=1.5 

w/t=1.0 w/t=1.5 
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Fig 5. Dimensionless shear buckling loads for C2-1, C2-2 and C2-3 
 
 

  
 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
Fig 6. Dimensionless shear buckling loads for C3-1, C3-2 and C3-3 
 
 
4.1. Stochastic Analysis 
 

The imperfection patterns of shells are random in 
nature. Hence stochastic analysis is a suitable way for 
introducing the results of the analyses. To this end, 
reliability function R(λ) can be introduced as follows: 
( ) [ ]λ>Λ=λ PR                                                        (4)    

In which λ is normalized load parameter (Q/QRpR) and Λ is 
the normalized random buckling load. Failure surface can 
be formulated as follows [11]:  
 
( ) ( ) 0x,x,xZ n21s =λ−ψ=λ−Λ=λ            (5)   

 
 
 

w/t=1.0 w/t=1.5 

w/t=1.0 w/t=1.5 

w/t=1.0 w/t=1.5 

w/t=1.0 w/t=1.5 

w/t=1.0 w/t=1.5 

w/t=1.0 w/t=1.5 
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The probability of failure (buckling) can be estimated as 
follows: 

( ) [ ] ( ) ( )∫
∞−

==<=
0

00 dftFFZPP zzf λ  (6) 

where Fz(t)is probability distribution function and  fz(t) is 
probability density function of Z. Assuming that Z(λ) is 
normally distributed: 

( )


















 −
−=

2

2
1

2
1

zz
z

atexPtf
σπσ

  

                 (7) 

                                                                           

in which [ ]ZEa =  and ( )[ ] 5.0zVarz =σ . 
 
Base on the above calculation, the plot of R versus 
dimensionless buckling load is illustrated in Fig. 7. The 
allowable load can be defined as Q/QRpR in which the 
reliability function becomes less than 1. Hence in this 
study Q/QRpR=0.2. In other words, the shear buckling loads 
equal to 0.2QRpR should be considered to achieve reliable 
results in designing.  
 
         

 
Fig. 7. Reliability function of global shear buckling 

 
 
5.  Conclusions: 
 

Nonlinear static analyses were carried out to 
investigate the effects of geometric imperfections on 
global shear buckling of cylindrical shells. To this end, 
more than 320 FE models of different diameter to 
thickness ratios were prepared. Results of this study 
revealed that shear buckling capacity of cylindrical shells 
is susceptible to both imperfection amplitude and its 
pattern. 
Furthermore results of this study seem to indicate that the 
plastic buckling capacity estimated by Yamaki’s 
expression can be considered as an upper band of plastic 
shear buckling capacity of the imperfect cylindrical shells. 
However, for concrete conclusions more theoretical and 
experimental studies are required.    
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