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Abstract 

In this paper, load-carrying capacity of steel shear wall (SSW) was estimated using artificial neural networks (ANNs). The 

SSW parameters including load-carrying capacity (as ANN’s target), plate thickness, thickness of stiffener, diagonal 

stiffener distance, horizontal stiffener distance and gravity load (as ANN’s inputs) are used in this paper to train the ANNs. 

144 samples data of each of these parameters was calculated using SSW simulation in ABAQUS. Load-carrying capacity 

of SSW was estimated using radial basic function (RBF) and multi-layer perceptron (MLP) neural networks. Spread 

parameter in RBF and number of hidden layer, number of neurons in this layers and activation function in MLP optimized 

using a trial and error method. The results showed that the load-carrying capacity of SSW could estimate using RBF and 

ANN by 84 and 96 percent of precision respectively. 
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1. Introduction 

In the current seismic resistant design, building 

structures are allowed to exceed their elastic limit 

under severe earthquake excitation. However, 

brittle collapse of a building should be prevented. 

Besides strength requirements, stiffness is another 

concern in a structural design. With high strength 

and high stiffness, the steel plate shear wall 

(SPSW) has drawn many engineers’ attention. 

Many research works have been carried out on the 

steel plate shear walls. One of the attractions of 

steel plate shear walls, SPSWs, is the easiness of 

opening application in the infill plate, sometimes 

required for passing the utilities, architectural 

purposes, or structural reasons. 

Experimental studies have been carried out on the 

thin steel plate shear walls by Caccese et al. [1], 

Driver et al. [2], and Lubell et al. [3]. Analytical 

studies on the shear buckling behavior of steel 

plate wall and the behavior of a multistory steel 

wall system were conducted by Elgaaly et al. [4, 

5], Driver et al.[6], Berman and Bruneau [7], and 

Sabouri-Ghomi et al. [8].Design rules of the thin  
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steel plate shear wall are also specified in the 

design specifications, such as AISC [9] and CSA 

[10]. In[11], several experiments have been 

performed on the behavior and energy absorption 

coefficients of ductile SPSW with stiffeners and 

without stiffeners. The obtained results in this 

approach show that behavior coefficients of the 

SPSW with stiffeners and without stiffeners are 

11.5 and 12.2, respectively. Energy absorption of 

the SPSW without stiffeners is 36%lower than that 

of SPSW with stiffeners. Another experiment has 

been carried out on the SPSW with and without 

opening. So the stiffeners are affected the SSW 

performance. 

AlHamaydeh and Sagher[12] investigated the key 

parameters influencing the behavior of steel plate 

shear walls. The complex behavior of steel plate 

shear walls was investigated in their paper through 

nonlinear finite element (FE) simulations. A 3d 

detailed FE model was developed and validated 

utilizing experimental results available in the 

literature. They investigated the influence of key 

parameters on the structural behavior. The 

parameters that they considered were:  the infill 
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plate thickness, the beam size, the column size, the 

infill plate material grade and the frame material 

grade. Several structural response used in their 

research as criteria to quantify their influence on 

the SPSW behavior. The evaluated structural 

responses was:  yield strength, yield displacement, 

ultimate strength, initial stiffness and secondary 

stiffness. Their obtained results show that overall 

the most influential parameter is the infill plate 

thickness followed by the beam size. Also, it was 

found that the least influential parameter is the 

frame material grade. Songzhi et al studied seismic 

behavior of SPSW using finite element method. 

In this paper according to evaluated results 

provided by Delnavaz et al. an artificial neural 

network modeling has been done to estimate the 

load-carrying capacity of SPSW. The load-

carrying capacity of SPSW is predicted using 

multi-layer perceptron and radial basis function 

neural networks. To ANN modeling six parameter 

containing load-carrying capacity (as ANN’s 

target), plate thickness, thickness of stiffener, 

diagonal stiffener distance, horizontal stiffener 

distance and gravity load (as ANN’s inputs) are 

used that have the most influence on SPSW 

performance. 

2. ANNs modeling 

To load-carrying capacity estimation using RBF 

neural network, the MATLAB R2016a is used. 15 

% of total data are selected randomly as testing 

data and others as training data. Then the RBF was 

coded with six inputs including training matrix, 

target matrix. Goal, SPREAD, MN, and DF Goal 

is the mean square error goal that its default value 

is 0. That’s means that the network trained until its 

error goes to zero. Spread is spread of radial basis 

functions, default = 1.0.MN is maximum number 

of neurons, and default is number of input vectors. 

This process returns a new radial basis network 

that can get new inputs and estimate the output. 

The larger that SPREAD is the smoother the 

function approximation will be. Too large a spread 

means a lot of neurons will be required to fit a fast 

changing function.  Too small a spread means 

many neurons will be required to fit a smooth 

function, and the network may not generalize well.  

Call NEWRB with different spreads to find the 

best value for a given problem. 

To MLP optimized modeling to estimate load-

carrying capacity of SPSW, the algorithm showing 

in fig. 1 must be conducted. MLP neural network 

modeling with back propagation algorithm is done 

using MATLAB R2016a. The data was randomly 

divided into training (70% of all dataset, testing 

(15% of all dataset) and validation (15% of all 

dataset) subset to model the MLP neural network. 

The network use mean square error parameter to 

assess the performance. The training data points 

were used to approximate the network weights and 

biases, and the test data points and validation data 

points were used to assess the prediction capability 

of the developed model against new data. 

In the next step, the input and output variables 

were normalized according to the following 

equation to increase the network prediction speed 

and precision, generalization capability. 

       
       

          
     (1) 

Where     ,      and      represent the values 

of normalized, minimum, and maximum of the 

variable X, respectively. It is obvious that all 

variables have been scaled between 0 and 1after 

normalization. Variable normalization is a 

common practice in ANN modeling; especially 

when the range of variation is very wide and 

different. 

Determination of the number of hidden layers, 

neurons in each hidden layer, the neuron activation 

function are important in MLP neural network 

modeling. These parameters are normally 

determined through a trial and error procedure via 

comparing the performance of different network 

architecture after training the network. During the 

training process, the performance function which 

is usually the mean squared error (MSE) of the 

network prediction should be minimized in each 

iteration in order to find the appropriate values of 

ANN parameters. 

In the present study, various neuron activation 

functions were tested and subsequently the logistic 

sigmoid (equation (2)) and purelin transfer 

functions (equation (3)) were selected for hidden 

and output layers, respectively. 

 ( )   
 

(       )
     (2) 

 ( )       (3) 

The activation functions of hidden layers should 

introduce nonlinearity into the network in order to 

enhance network prediction capability in 

comparison with plain perception. Moreover, a 

linear activation function, such as purelin, could be 
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selected for the output neuron since it is 

appropriate for continuous valued targets. 

 

Figure 1. The applied algorithm to create an optimized 

MLP neural network model. 

The predictive performance of ANN networks 

were compared by changing the number of hidden 

layers, number of neurons in each hidden layer, 

and also different back propagation training 

algorithm such as scaled conjugate gradient 

(SCG), Levenberg Marquardt(LM), gradient 

descent with variable learning rate back 

propagation (GDX), and Resilient back 

propagation(RP).The best network architecture is 

selected based on several statistical criteria, 

including regression (coefficient of 

determination  ), error histogram, and mean 

squared error (MSE). 

AS mentioned above, several configurations were 

tested for ANN using a trial and error method to 

find the best architecture for the network to 

estimate the load-carrying capacity of SSW. A 

feed forward neural network generally has one or 

more hidden layer that enables the network to 

model nonlinear and complicated functions. The 

network performance is not satisfied if the number 

of neurons in hidden layers was smaller. On the 

other hand, if the larger number of neurons was 

selected for this layer then the training phase was 

long and boring and the network may over fitted 

and get in local minimum. Therefore, there is no 

generalized rule to select the optimum number of 

hidden layers and neurons in them. These ANN 

parameters depend on the complication of the 

system to be modeled. 

3. Data 

To load-carrying capacity estimation through 

effective parameters on the SSW performance 

using neural networks, first several SSW modeling 

have been done in abaqus software to obtain the 

neural networks inputs and targets dataset. This 

obtaining datasets have been validated using 

experimental results provided in [12]. 144 samples 

data obtained from abaqus. The effective 

parameters on the load-carrying capacity are plate 

thickness, thickness of stiffener, diagonal stiffener 

distance, horizontal stiffener distance and gravity 

load. 

4. Results and discussion 

In this section, firs the RBF neural network result 

are presented. After determine RBF inputs, the 

network was trained and the regression, 

performance and the targets and inputs comparison 

plot are explored. 

RBF configuration is shown in fig.2. As can be 

seen in this figure, the number of input, first and 

second hidden layers neurons are 6, 124 and 1 

respectively. The output layer has one neuron. 

RBF neural network estimation performance is 

shown in fig.3. In this figure the horizontal axis 

represent mean square error of estimated data 
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(output) and the vertical axis represent the epoch 

number. An epoch is a measure of the number of 

times all of the training vectors are used once to 

update the weights. For batch training all of the 

training samples pass through the learning 

algorithm simultaneously in one epoch before 

weights are updated. As seen from fig.3, in the 

first epochs, the network estimation error is high 

that this error over 125 epochs arrived the 

minimum error value of about zero. 

Outputs and targets data of the RBF neural 

network compared in the plot showing in fig.4. In 

fact the network outputs and targets are the load-

carrying capacity of SSW. From the fig.4.a it can 

be seen that the network outputs and targets are in 

accordance completely. It should mentioned that 

the networks use training data as new inputs after 

completing training process and estimated new 

outputs that this new outputs compared with the 

targets in this figure. The fig.4.b showed the 

regression of the network outputs and targets. In 

the regression plot shown in fig.4.b, the horizontal 

and vertical axis shows the outputs and targets 

respectively. If the fitting line pass through all data 

(outputs and targets) then it can be said that the 

estimation precision is 100% that happened here. 

Fig.5 and fig.6 has the similar interpretation 

represented for the fig.4. The only difference is in 

the phase of the network modeling which the fig.4 

is for training data while fig.5 and fig.6 are for 

testing and all data respectively. The network 

accuracy for testing and all data are 36% and 94% 

respectively. So the RBF neural network that 

modeled in this paper can predict the load-carrying 

capacity with total precision of 94%. 

 

 

 

 

Figure 2. RBF neural network optimum configuration 

 

Figure 3. RBF neural network performance 
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Figure 4. RBF neural network outputs and targets comparison for training data 

 

Figure 5. RBF neural network outputs and targets comparison for testing data 
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Figure 6. RBF neural network outputs and targets comparison for all data 

 

Figure 7. MLP optimum architecture 

The estimation results for MLP neural network are 

presented in the following. As previously 

mentioned, the optimum configuration of ANN 

find using a trial and error method. By testing 

different architecture for the MLP neural network, 

it is shown that the best network is that with three 

hidden layers and eight neurons in each, sigmoid 

transfer function and Levenberg Marquardt as 

training algorithm (see fig.7). As shown in fig.7, 

this network has 6 and 1 neurons in the input and 

output layer respectively that this number of 

neurons are selected by the network respected to 

the number of the rows in the inputs and outputs 

matrix. 

Network convergence and performance in training, 

testing and validation phase shown in fig.8. As 

shown in this figure, the network is converged 

over 121 epochs and gains the optimum results. It 

should mentioned that, network converging means 

that the network goes to minimum mean square 

error as the training, testing and validation plot not 

getting away from each other. 

The error histogram of predicted data is shown in 

fig.9 that this plot compute the error values as a 

difference between target values and predicted 

values for training, testing and validation data. The 

error values presented in this figure are relatively 

high due to large number of targets and output 

data. 
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Another plot that could present for result 

assessment is the regression of the data (see 

fig.10). It is obvious from this figure that the 

network prediction accuracy for prediction of 

training, testing, validation and all data are 

99.91%, 99.96%, 99.80 and 99.84 respectively that 

are good precisions. Therefore the network mean 

error for all data is about 1.16%. 

The last plot presented here for evaluating MLP 

prediction results is comparison between network 

targets (real load-carrying capacity values) and 

outputs (predicted load-carrying capacity values). 

It is clearly seen that the targets and outputs data 

are in good accordance. 

 

 

Figure 8. MLP neural network performance 

 

 

Figure 9. Error histogram for MLP neural network 
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Figure 10. Linear regression between MLP neural network targets and outputs 

 

Figure 11. The MLPNN targets and outputs data comparison 
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5. Conclusion 

In this paper two different artificial neural network 

(RBF and MLP) approaches have been developed 

for prediction the load-carrying capacity of steel 

plate shear walls. The load-carrying capacity as 

ANN target and the plate thickness, thickness of 

stiffener, diagonal stiffener distance, horizontal 

stiffener distance and gravity load as ANN inputs 

used to model the neural networks. The used data 

for ANN modeling are obtained using 144 sample 

of SPSW with different geometries and loading 

conditions modeled and validated through 

experimental results. This obtained data divided 

randomly into training, testing and validation sets. 

Optimum configuration for this two type of ANNs 

obtained by testing different training algorithms 

and different architectures. This study indicate that 

the optimum configuration for RBF neural 

network is that with one input layer, two hidden 

layer and one output layer with 6, 124, 1 and 1 

neurons in each of them respectively and the best 

model for MLP neural network is that with one 

input layer and 6 neurons in it, three hidden layers 

and eight neurons in each of them, one output layer 

and one neuron in it, LM as training algorithm and 

sigmoid transfer function. The results show that 

the RBF and MLP neural networks can predict the 

load-carrying capacity of SPSW with correlation 

coefficient of 0.94 and 0.99 respectively. 
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